EXCITATION OF WANNIER – STARK STATES IN A CHAIN OF COUPLED OPTICAL RESONATORS WITH LINEAR GAIN AND NONLINEAR LOSSES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, we theoretically study the nonlinear dynamics of Wannier – Stark states in a dissipative system of interacting optical resonators whose resonant frequencies depend linearly on their number. We show that negative losses in some resonators can switch the system to a lasing regime with Wannier – Stark states acting as working modes. Our extensive numerical simulations show that single-frequency stationary regimes can exist in such a system as well as multi-frequency ones. In the latter case, Bloch oscillations can appear in the system. We investigate selective excitation of Wannier – Stark states enabled by an appropriate dissipation profile. A simple perturbation theory describing the quasi-linear regimes is developed and compared with the numerical results.

About the authors

A. Verbitskiy

School of Physics and Engineering, ITMO University

Email: alexey.verbitskiy@metalab.ifmo.ru
St. Petersburg, Russia

A. Yulin

School of Physics and Engineering, ITMO University

St. Petersburg, Russia

References

  1. T. Higuchi, M. I. Stockman, and P. Hommelhoff, Phys. Rev. Lett., 113, 213901 (2014).
  2. H. Y. Wang, X. M. Zhao, L. Zhuang et al., J. Phys.: Condens. Matter, 34, 365402 (2022).
  3. U. B. Hansen, O. F. Syljuåsen, J. Jensen et al., Nature Communications, 13, 2547 (2022).
  4. G.H. Wannier, Elements of solid state theory, CUP Archive (1959).
  5. W. Shockley, Phys. Rev. Lett., 28, 349 (1972).
  6. F. Bloch, Z. Phys., 52, 555 (1929).
  7. C. Zener, Proc. R. Soc. A, 145, 523 (1934).
  8. W.V. Houston, Phys. Rev., 57, 184 (1940).
  9. C. Waschke, H.G. Roskos, R. Schwedler et al, Phys. Rev. Lett. 70, 3319 (1993).
  10. M.B. Dahan, E. Peik, J. Reichel et al., Phys. Rev. Lett., 76, 4508 (1996).
  11. S. Wilkinson, C. Bharucha, K. Madison et al., Phys. Rev. Lett., 76, 4512 (1996).
  12. H. R. Zhang and C. P. Sun, Phys. Rev. A, 81, 063427 (2010).
  13. Z.A. Geiger, K.M. Fujiwara, K. Singh et al., Phys. Rev. Lett., 120, 213201 (2018).
  14. Z. Pagel, W. Zhong, R.H. Parker et al., Phys. Rev. A, 102, 053312 (2020).
  15. L. Masi, T. Petrucciani, G. Ferioli et al., Phys. Rev. Lett., 127, 020601 (2021).
  16. S. Longhi, Opt. Lett., 30, 786 (2005).
  17. S. Bahmani and A.N. Askarpour, Phys. Lett. A, 384, 126596 (2020).
  18. G. Monsivais and R. Esquivel-Sirvent, Journal of Mechanics of Materials and Structures, 2, 1585 (2007).
  19. G. Monsivais, R. Mendez-Sanchez, A. de Anda et al., Journal of Mechanics of Materials and Structures, 2, 1629 (2007).
  20. N. Lanzillotti-Kimura, A. Fainstein, B. Perrin et al., Phys. Rev. Lett., 104, 197402 (2010).
  21. Y.-K. Liu, H.-W. Wu, P. Hu et al., Appl. Phys. Express, 14, 064501 (2021).
  22. A.R. Davoyan, I.V. Shadrivov, A.A. Sukhorukov et al., Appl. Phys. Lett., 94, 161105 (2009).
  23. V. Kuzmiak, S. Eyderman, and M. Vanwolleghem, Phys. Rev. B, 86, 045403 (2012).
  24. B. H. Cheng, Y. C. Lai, and Y. C. Lan, Plasmonics, 9, 137 (2014).
  25. V. Kuzmiak, A. A. Maradudin, and E. R. Mendez, Opt. Lett., 39, 1613 (2014).
  26. A. Block, C. Etrich, T. Limboeck et al., Nature Communications, 5, 3843 (2014).
  27. H. Wetter, Z. Fedorova, and S. Linden, Opt. Lett., 47, 3091 (2022).
  28. H. Flayac, D. D. Solnyshkov, and G. Malpuech, Phys. Rev. B, 83, 045412 (2011).
  29. H. Flayac, D. D. Solnyshkov, and G. Malpuech, Phys. Rev. B, 84, 125314 (2011).
  30. J. Beierlein, O.A. Egorov, T.H. Harder et al., Adv. Opt. Mater., 9, 2100126 (2021).
  31. G. Monsivais, M. del Castillo-Mussot, and F. Claro, Phys. Rev. Lett., 64, 1433 (1990).
  32. C. M. de Sterke, J. E. Sipe, and L. A. Weller-Brophy, Opt. Lett., 16, 1141 (1991).
  33. U. Peschel, T. Pertsch, and F. Lederer, Opt. Lett., 23, 1701 (1998).
  34. A. Kavokin, G. Malpuech, A. Di Carlo et al., Phys. Rev. B, 61, 4413 (2000).
  35. G. Malpuech, A. Kavokin, G. Panzarini et al., Phys. Rev. B, 63, 035108 (2001).
  36. S. Longhi, Europhys. Lett., 76, 416 (2006).
  37. R. El-Ganainy, K. G. Makris, M. A. Miri et al., Phys. Rev. A, 84, 023842 (2011).
  38. G. Lenz, I. Talanina, and C. M. De Sterke, Phys. Rev. Lett., 83, 963 (1999).
  39. U. Peschel, C. Bersch, and G. Onishchukov, Open Phys., 6, 619 (2008).
  40. P. B. Wilkinson, Phys. Rev. E, 65, 056616 (2002).
  41. S. Longhi, Phys. Rev. Lett., 103, 123601 (2009).
  42. N. K. Efremidis, and D. N. Christodoulides, Opt. Lett., 29, 2485 (2004).
  43. C. M. de Sterke, J. N. Bright, P. A. Krug et al., Phys. Rev. E, 57, 2365 (1998).
  44. M. Ghulinyan, C. J. Oton, Z. Gaburro et al., Phys. Rev. Lett., 94, 127401 (2005).
  45. X. Qi, K. G. Makris, R. El-Ganainy et al., Opt. Lett., 39, 1065 (2014).
  46. S. Mukherjee, A. Spracklen, D. Choudhury et al., New J. Phys., 17, 115002 (2015).
  47. T. Pertsch, P. Dannberg, W. Elflein et al., Phys. Rev. Lett., 83, 4752 (1999).
  48. R. Morandotti, U. Peschel, J. S. Aitchison et al., Phys. Rev. Lett., 83, 4756 (1999).
  49. R. Sapienza, P. Costantino, D. Wiersma, et al., Phys. Rev. Lett., 91, 263902 (2003).
  50. V. Agarwal, J. A. del Rio, G. Malpuech et al., Phys. Rev. Lett., 92, 097401 (2004).
  51. S. Longhi, M. Lobino, M. Marangoni et al., Phys. Rev. B, 74, 155116 (2006).
  52. B. A. Usievich, V. A. Sychugov, J. K. Nirligareev et al., Opt. Spectrosc., 97, 790 (2004).
  53. N. Chiodo, G. Della Valle, R. Osellame et al., Opt. Lett., 31, 1651 (2006).
  54. A. Regensburger, C. Bersch, M. A. Miri et al., Nature, 488, 167 (2012).
  55. Y. L. Xu, W.S. Fegadolli, L. Gan et al., Nature Comm., 7, 11319 (2016).
  56. I.L. Garanovich, S. Longhi, A.A. Sukhorukov et al., Phys. Rep., 518, 1 (2012).
  57. X. Yang, C. Gong, C. Zhang et al., Laser & Photonics Rev., 16, 2100171 (2022).
  58. Z. Chen, G. Dong, G. Barillaro et al., Progress in Materials Science, 121, 100814 (2021).
  59. A. E. Zhukov, N. V. Kryzhanovskaya, E. I. Moiseev et al., Light: Science & Applications, 10, 80 (2021).
  60. Q. Zhang, Q. Shang, R. Su et al., Nano Lett., 21, 1903 (2021).
  61. M. Sumetsky, Progress in Quantum Electronics, 64, 1 (2019).
  62. H. He, H. Li, Y. Cui et al., Adv. Opt. Mater., 7, 1900077 (2019).
  63. Y. Zhao, Y. Chen, Z. S. Hou et al., Opt. Lett., 47, 617 (2022).
  64. K. Koshelev, S. Kruk, E. Melik-Gaykazyan et al., Science, 367, 288 (2020).
  65. M. S. Hwang, K. Y. Jeong, J. P. So, et al., Comm. Phys., 5, 106 (2022).
  66. D. Bajoni, P. Senellart, E. Wertz et al., Phys. Rev. Lett., 100, 047401 (2008).
  67. A. Verbitskiy, A. Yulin, and A. G. Balanov, Phys. Rev. A, 107, 053519 (2023).
  68. W. Deering, M. Molina, and G. Tsironis, Appl. Phys. Lett., 62, 2471 (1993).
  69. J. Eilbeck, G. Tsironis, and S. K. Turitsyn, Phys. Scr., 52, 386 (1995).
  70. P.G. Kevrekidis, K.O. Rasmussen and A.R. Bishop, International Journal of Modern Physics B, 15, 2833 (2001).
  71. N.K. Efremidis, S. Sears, D.N. Christodoulides et al., Phys. Rev. E, 66, 046602 (2002).
  72. A.A. Sukhorukov, Yu.S. Kivshar, H.S. Eisenberg et al., IEEE J. Quantum Electron., 39, 31 (2003).
  73. U. Peschel, O. Egorov, and F. Lederer, Opt. Lett., 29, 1909 (2004).
  74. D. Pelinovsky and P. G. Kevrekidis, Physica D, 212, 1 (2005).
  75. A. Yulin, D. V. Skryabin, and P. St. J. Russell, Opt. Express, 13, 3529 (2005).
  76. A.V. Yulin, D.V. Skryabin, and A.G. Vladimirov, Opt. Express, 14, 12347 (2006).
  77. H. Susanto, P. G. Kevrekidis, B. A. Malomed et al., Phys. Rev. E, 75, 056605 (2007).
  78. O.A. Egorov and F. Lederer, Phys. Rev. A, 76, 053816 (2007).
  79. O.A. Egorov, F. Lederer, and Yu.S. Kivshar, Opt. Express, 15, 4149 (2007).

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies