INTENSE HIGH HARMONIC GENERATION IN FULLERENE MOLECULE C180

Cover Page

Cite item

Abstract

Investigation of high‑order harmonic generation (HHG) in the large fullerene C180 molecule under intense laser field is presented. To model the С180 molecule and its interaction with the laser field, we employ the tight‑binding mean‑field approach. Our detailed analysis of the HHG power spectrum reveals the multiphoton resonant nature of harmonic generation, shedding light on the underlying quantum processes involved. We examine the dependence of cutoff harmonics on both laser intensity and frequency, providing valuable insights into the optimal conditions for enhancing HHG in C180. We demonstrate that the C180 molecule exhibits a significantly stronger high harmonic intensity compared to the more widely studied C60 fullerene.

About the authors

G. K. Avetisyan

Centre of Strong Fields Physics at Physics Research Institute, Yerevan State University

Email: amarkos@ysu.am
Armenia, 0025, Yerevan

A. G. Kazaryan

Centre of Strong Fields Physics at Physics Research Institute, Yerevan State University

Email: amarkos@ysu.am
Armenia, 0025, Yerevan

G. G. Matevosyan

Institute of Radiophysics and Electronics NAS RA

Email: amarkos@ysu.am
Armenia, 0203, Ashtarak

G. F. Mkrtchyan

Centre of Strong Fields Physics at Physics Research Institute, Yerevan State University

Author for correspondence.
Email: amarkos@ysu.am
Armenia, 0025, Yerevan

References

  1. P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
  2. M. Lewenstein, P. Balcou, M. Y. Ivanov et al., Phys. Rev. A 49, 2117 (1994).
  3. H. K. Avetissian, Relativistic Nonlinear Electrodynamics: The QED Vacuum and Matter in Super- Strong Radiation Fields, Springer, New York (2015).
  4. P. B. Corkum and F. Krausz, Nature Phys. 3, 381 (2007).
  5. F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
  6. E. H. Falcao and F. Wudl, J. Chem. Technol. Biotechnol. 82, 524 (2007).
  7. S. K. Tiwari, V. Kumar, A. Huczko, et al., Critical Rev. Sol. State and Mater. Sci. 41, 257 (2016).
  8. R. E. Smalley, Rev. Mod. Phys. 69, 723 (1997).
  9. H. W. Kroto, J. R. Heath, S. C. O’Brien et al., Nature 318, 162 (1985).
  10. H. Kroto and K. McKay, Nature 331, 328 (1988).
  11. D. York, J. P. Lu, and W. Yang, Phys. Rev. B 49, 8526 (1994).
  12. G. E. Scuseria, Chem. Phys. Lett. 243, 193 (1995).
  13. G. E. Scuseria, Science 271, 942 (1996).
  14. S. Itoh, P. Ordejon, D. A. Drabold, and R. M. Martin, Phys. Rev. B 53, 2132 (1996).
  15. C. H. Xu and G. E. Scuseria, Chem. Phys. Lett. 262, 219 (1996).
  16. P. W. Dunk, N. K. Kaiser, C. L. Hendrickson et al., Nature Commun. 3, 855 (2012).
  17. J. W. Martin, G. J. McIntosh, R. Aru et al., Carbon 125, 132 (2017).
  18. S. Wang, Q. Chang, G. Zhang et al., Front. Chem. 8, 607712 (2020).
  19. E. Ghavanloo, H. Rai-Tabar, A. Kausar et al., Phys. Rep. 996, 1 (2023).
  20. T.D. Donnelly, T. Ditmire, K. Neuman et al., Phys. Rev. Lett. 76, 2472 (1996).
  21. C. Vozzi, M. Nisoli, J. Caumes et al., Appl. Phys. Lett. 86 (2005).
  22. O. Smirnova, Y. Mairesse, S. Patchkovski et al., Nature 460, 972 (2009).
  23. Б.Р. Авчян, А. Г. Казарян, К. А. Сарг- сян, Х. В. Седракян, ЖЭТФ 161, 155 (2022).
  24. B.R. Avchyan, A.G. Ghazaryan, S.S. Israelyan, and K. V. Sedrakian, J. Nanophot. 16, 036001 (2022).
  25. Б.Р. Авчян, А. Г. Казарян, К. А. Саргсян, Х. В. Седракян, Письма в ЖЭТФ 116, 426 (2022).
  26. S. Gnawali, R. Ghimire, K. R. Maga et al., Phys. Rev. B 106, 075149 (2022).
  27. R. Ganeev, L.E. Bom, J. Abdul-Hadi et al., Phys. Rev. Lett. 102, 013903 (2009).
  28. R. Ganeev, L.E. Bom, M. Wong et al., Phys. Rev. A 80, 043808 (2009).
  29. G.P. Zhang, Phys. Rev. Lett. 95, 047401 (2005).
  30. G.P. Zhang and T. F. George, Phys. Rev. A 74, 023811 (2006).
  31. G.P. Zhang and Y.H. Bai, Phys. Rev. B 101, 081412(R) (2020).
  32. H.K. Avetissian, A.G. Ghazaryan, and G.F. Mkrtchian, Phys. Rev. B 104, 125436 (2021).
  33. H.K. Avetissian, S. Sukiasyan, H.H. Matevosyan, and G.F. Mkrtchian, Results Phys. 53, 106951 (2003), https://doi.org/10.1016/j.rinp.2023.106951, arXiv:2304.04208 (2023).
  34. R.L. Martin and J.P. Ritchie, Phys. Rev. B 48, 4845 (1993).
  35. G. Zhang, Phys. Rev. B 56, 9189 (1997).
  36. P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Courier Corporation, New York (2007).
  37. P. Schwerdtfeger, L. Wirz, and J. Avery, J. Comput. Chem. 34, 1508 (2013).
  38. G.P. Zhang, M.S. Si, M. Murakami et al., Nature Commun. 9, 3031 (2018).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).