TWO STAGES IN THE FORMATION OF THE BRANCHING STRUCTURE OF A DECIDUOUS TREE
- Authors: Grigor'ev S.V.1,2, Shnyrkov O.D.1,2, Pshenichnyy K.A.1, Yashina E.G.1,2
-
Affiliations:
- Petersburg Nuclear Physics Institute, NRC “Kurchatov institute”
- Saint-Petersburg State University
- Issue: Vol 165, No 3 (2024)
- Pages: 438-451
- Section: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/256502
- DOI: https://doi.org/10.31857/S0044451024030131
- ID: 256502
Cite item
Abstract
Fractal properties in the formation of the branching structure of deciduous trees have been studied by numerical Fourier analysis. It is shown that the lower levels of branching of adult trees are formed obeying the law of the logarithmic fractal in two-dimensional space, according to which the surface area of the lower branch is equal to the sum of the surface areas of the branches after its branching, i.e. the law of conservation of area when scaling is fulfilled. The structure of branches at the upper levels of branching obeys the law of the logarithmic fractal in three-dimensional space, i.e. the law of volume conservation during scaling, which is natural, since living tissue occupies completely an young branch, and not only its surface. A mathematical model is proposed that generalizes the concepts of a logarithmic fractal on the surface for adult branches and a logarithmic fractal in volume for young branches. Thus, an integral fractal concept of the growth and branching structure of deciduous trees is constructed.
About the authors
S. V. Grigor'ev
Petersburg Nuclear Physics Institute, NRC “Kurchatov institute”; Saint-Petersburg State University
Email: grigoryev_sv@pnpi.nrcki.ru
Russian Federation, 188300, Orlova Roscha, Gatchina; 198504, Ulyanovskaya 1, Saint Petersburg
O. D. Shnyrkov
Petersburg Nuclear Physics Institute, NRC “Kurchatov institute”; Saint-Petersburg State University
Email: grigoryev_sv@pnpi.nrcki.ru
Russian Federation, 188300, Orlova Roscha, Gatchina; 198504, Ulyanovskaya 1, Saint Petersburg
K. A. Pshenichnyy
Petersburg Nuclear Physics Institute, NRC “Kurchatov institute”
Email: grigoryev_sv@pnpi.nrcki.ru
Russian Federation, 188300, Orlova Roscha, Gatchina
E. G. Yashina
Petersburg Nuclear Physics Institute, NRC “Kurchatov institute”; Saint-Petersburg State University
Author for correspondence.
Email: grigoryev_sv@pnpi.nrcki.ru
Russian Federation, 188300, Orlova Roscha, Gatchina; 198504, Ulyanovskaya 1, Saint Petersburg
References
- B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York (1983).
- H. О. Peitgen and P. H. Richter, The Beauty of Fractals, Springer, Berlin (1986).
- Е. Федер, Фракталы, Мир, Москва (1991).
- В. К. Балханов, Ю. Б. Башкуев, Моделирование разрядов молнии фрактальной геометрией, ЖТФ 82, 126 (2012).
- А. Г. Бершадский, Фрактальная структура турбулентных вихрей, ЖЭТФ 96, 625 (1989).
- Fractals in Biology and Medicine, ed. by T. F. Nonnenmacher, G. A. Losa, and E. R. Weibel, Birkh¨auser Verlag, Basel (1994).
- Fractals in Biology and Medicine, Vol. II, ed. by G. Losa, T. F. Nonnenmacher, D. Merlini, and E. R. Weibel, Birkh¨auser Verlag, Basel (1998).
- Fractals in Biology and Medicine, Vol. III, ed. by G. Losa, D. Merlini, T. F. Nonnenmacher, and E. R. Weibel, Birkh¨auser Verlag, Basel (2002).
- Fractals in Biology and Medicine, Vol. VI, ed. by G. Losa, D. Merlini, T. F. Nonnenmacher, and E. R. Weibel, Birkh¨auser Verlag, Basel (2005).
- L. S. Liebovitch, Fractals and Chaos Simplified for the Life Sciences, Oxford Univ. Press, New York (1998).
- I. C. Andronache, H. Ahammer, H. F. Jelineck, D. Peptenatu, A.-M. Ciobotaru, C. C. Draghici, R. D. Pintilii, A. G. Simion, and C. Teodorescu, Fractal Analysis for Studying the Evolution of Forests, Chaos, Solitons and Fractals 91, 310 (2016).
- А. И. Гурцев, Ю. Л. Цельникер, Фрактальная структура ветви дерева, Сибирский экологический журнал 4, 431 (1999).
- J. P. Richter and R. C. Bell, The Notebooks of Leonardo da Vinci, Dover, New York (1970).
- K. Shinozaki, K. Yoda, K. Hozumi, and T. Kira, A Quantitative Analysis of Plant Form-the Pipe Model Theory I. Basic Analyses, Jpn. J. Ecol. 14, 97 (1964).
- Th. A. McMahon and R. E. Kronauer, J. Theor. Biol. 59, 443 (1976).
- G. B. West, J. H. Brown, and B. J. Enquist, A General Model for the Origin of Allometric Scaling Laws in Biology, Science 276, 122 (1997).
- G. B. West, J. H. Brown, and B. J. Enquist, The Fourth Dimension of Life: Fractal Geometry and Allometric Scaling of Organisms, Science 284, 1677 (1999).
- G. B. West, B. J. Enquist, and J. H. Brown, A General Quantitative Theory of Forest Structure and Dynamics, PNAS 106, 7040 (2009).
- F. Simini, T. Anfodillo, M. Carrer, J. R. Banavar, and A. Maritan, Self-Similarity and Scaling in Forest Communities, PNAS 107, 7658 (2010).
- L. Kocillari, M. E. Olson, S. Suweis et al., The Widened Pipe Model of Plant Hydraulic Evolution, PNAS 118, e2100314118 (2021).
- R. Lehnebach, R. Beyer, V. Letort, and P. Heuret, The Pipe Model Theory Half a Century on: a Review, Annals of Botany 121, 773 (2018).
- C. Eloy, Leonardo’s Rule, Self-Similarity, and WindInduced Stresses in Trees, Phys. Rev. Lett. 107, 258101 (2011).
- R. Minamino and M. Tateno, Tree Branching: Leonardo da Vinci’s Rule versus Biomechanical Models, PLoS One 9, e93535 (2014).
- E. Nikinmaa, Analyses of the Growth of Scots Pine: Matching Structure with Function, Acta Forestalia Fennica 235, 7681 (1992).
- K. Sone, K. Noguchi, and I.Terashima, Dependency of Branch Diameter Growth in Young Acer Trees on Light Availability and Shoot Elongation, Tree Physiology 25, 39 (2005).
- K. Sone, A. A. Suzuki, S. Miyazawa, K. Noguchi, and T. Terashima, Maintenance Mechanisms of the Pipe Model Relationship and Leonardo da Vinci’s Rule in the Branching Architecture of Acer Rufinerve Trees, J. Plant Res. 122, 41 (2009).
- Ю. Л. Цельникер, Структура кроны ели, Лесоведение 4, 35 (1994).
- Ю. Л. Цельникер, М. Д. Корзухин, Б. Б. Зейде, Морфологические и физиологические исследования кроны деревьев, Мир Урании, Москва (2000).
- S. V. Grigoriev, O. D. Shnyrkov, P. M. Pustovoit, E. G. Iashina, and K. A. Pshenichnyi, Experimental Evidence for Logarithmic Fractal Structure of Botanical Trees, Phys. Rev. E 105, 044412 (2022).
- H. D. Bale and P. W. Schmidt, Phys. Rev. Lett. 53, 596 (1984).
- J. Teixeira, Small-Angle Scattering by Fractal Systems, J. Appl. Crystallogr. 21, 781 (1988).
- Po-zen Wong and A. J. Bray, Porod Scattering from Fractal Surfaces, Phys. Rev. Lett. 60, 1344 (1988).
- Е. Г. Яшина, С. В. Григорьев, Малоугловое рассеяние нейтронов на фрактальных объектах, Поверхность. Рентгеновские, синхротронные и нейтронные исследования 9, 5 (2017).
- R. Zwiggelaar and C. R. Bull, Optical Determination of Fractal Dimensions Using Fourier Transforms, Opt. Engin. 34, 1325 (1995).
- D. A. Zimnyakov and V. V. Tuchin, Fractality of Speckle Intensity Fluctuations, Appl. Opt. 35, 4325 (1996).
- C. Allain and M. Cloitre, Optical Diffraction on Fractals, Phys. Rev. B 33, 3566 (1986).
- Дж. Гудмен, Введение в фурье-оптику, Мир, Москва (1970).
- А. Н. Матвеев, Оптика, Высшая школа, Москва (1985).
- J. O. Indekeu and G. Fleerackers, Logarithmic Fractals and Hierarchical Deposition of Debris, Physica A 261, 294 (1998).
- П. М. Пустовойт, Е. Г. Яшина, К. А. Пшеничный, С. В. Григорьев, Классификация фрактальных и нефрактальных объектов в пространстве двух измерений, Поверхность. Рентгеновские, синхротронные и нейтронные исследования 12, 3 (2020).
- А. А. Зинчик, Я. Б. Музыченко, А. В. Смирнов, С. К. Стафеев, Расчет фрактальной размерности регулярных фракталов по картине дифракции в дальней зоне, Научно-техн. вестник СПбГУ ИТМО 60, 17 (2009).
- С. В. Григорьев, О. Д. Шнырков, К. А. Пшеничный, П. М. Пустовойт, Е. Г. Яшина, Модель фрактальной организации хроматина в двумерном пространстве, ЖЭТФ 163, 428 (2023).
- https://github.com/tre3k/fractal
- И. Г. Серебряков, Экологическая морфология растений. Жизненные формы покрытосеменных и хвойных, Высшая школа, Москва (1962).
- L. Teia, Anatomy of the Pythagoras’ Tree, Australian Senior Mat. J. 30, 38 (2016).
Supplementary files
