DIFRAKTsIONNOE IZLUChENIE NA OTKRYTOM KONTsE KRUGLOGO VOLNOVODA S DIELEKTRIChESKIM ZAPOLNENIEM

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Представлено аналитическое решение канонической задачи дифракционного излучения равномерно движущегося точечного заряда на открытом конце круглого волновода со сплошным диэлектрическим заполнением. Рассмотрен случай движения вдоль оси. При решении использован модифицированный метод сшивания, приводящий к уравнению Винера – Хопфа – Фока, а после его формального решения к бесконечной линейной системе уравнений на коэффициенты возбуждения волноводных мод. Данная система решается численно методом редукции с любой заданной точностью. Численные результаты получены для случая вылета заряда из волновода.

About the authors

S. N Galyamin

Email: s.galyamin@spbu.ru

References

  1. B. M. Bolotovskii and G. V. Voskresenskii, Diffraction radiation, Usp. Fiz. Nauk, 88, 209 (1966).
  2. B. M. Bolotovskii and E. A. Galst’yan, Diffraction and diffraction radiation, Usp. Fiz. Nauk, 170, 809 (2000).
  3. S. Kheifets, L. Palumbo and V. G. Vaccaro, Electromagnetic fields scattered by a charge moving on the axis of a semi-infinite circular waveguide: Radiation spectrum and longitudinal impedance, IEEE Trans. Nucl. Science, 34, 1094 (1987).
  4. A. V. Tyukhtin, Self-acceleration of a charge traveling into a waveguide, Phys. Rev. ST Accel. Beams, 17, 021303 (2014).
  5. S. N. Galyamin, A. V. Tyukhtin, V. V. Vorobev, A. A. Grigoreva and A. Aryshev, Bunch imaging at the open end of an embedded circular waveguide, IEEE Trans. Microwave Theory Techn., 66, 2100 (2018).
  6. D. V. Karlovets and A. P. Potylitsyn, On the theory of diffraction radiation, Journal of Experimental and Theoretical Physics, 107, 755 (2008).
  7. D. Karlovets and A. Potylitsyn, Generalized surface current method in the macroscopic theory of diffraction radiation, Physics Letters A, 373, 1988 (2009).
  8. A. Potylitsyn, M. I. Ryazanov, M. N. Strikhanov and A. A. Tishchenko, Diffraction Radiation from Relativistic Particles, Springer Tracts in Modern Physics, Vol. 239 (Springer-Verlag Berlin Heidelberg, 2011).
  9. M. Ivanyan, A. Grigoryan, A. Tsakanian and V. Tsakanov, Wakefield radiation from the open end of an internally coated metallic tube, Phys. Rev. ST Accel. Beams, 17, 074701 (2014).
  10. A. M. Altmark, A. D. Kanareykin and I. L. Sheinman, Tunable wakefield dielectric-filled accelerating structure, Tech. Phys., 50, 87 (2005).
  11. E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Dwayne Miller and F. X. K¨artner, Terahertz-driven linear electron acceleration, Nature Communications, 6, 8486 (2015).
  12. B. D. O’Shea, G. Andonian, S. Barber, K. Fitzmorris, S. Hakimi, J. Harrison, P. D. Hoang, M. J. Hogan, B. Naranjo, O. B. Williams, V. Yakimenko and J. Rosenzweig, Observation of acceleration and deceleration in gigaelectron-voltper-metre gradient dielectric wakefield accelerators, Nature Communications, 7, 12763 (2016).
  13. D. Wang, X. Su,L. Yan, Y. Du, Q. Tian, Y. Liang, L. Niu, W. Huang, W. Gai, C. Tang and S. Antipov, Phase control with two-beam interferometry method in a terahertz dielectric wakefield accelerator, Appl. Phys. Lett., 111, 174102 (2017).
  14. C. Jing, S. Antipov, M. Conde, W. Gai, G. Ha, W. Liu, N. Neveu, J. Power, J. Qiu, J. Shi, D. Wang and E. Wisniewski, Electron acceleration through two successive electron beam driven wakefield acceleration stages, Nucl. Instr. Meth. Phys. Res. A, 898, 72 (2018).
  15. M. T. Hibberd, A. L. Healy, D. S. Lake, V. Georgiadis, E. J. H. Smith, O. J. Finlay, T. H. Pacey, J. K. Jones, Y. Saveliev, D. A. Walsh, E. W. Snedden, R. B. Appleby, G. Burt, D. M. Graham and S. P. Jamison, Acceleration of relativistic beams using laser-generated terahertz pulses, Nature Photonics, 14, 755 (2020).
  16. H. Tang, L. Zhao, P. Zhu, X. Zou, J. Qi, Y. Cheng, J. Qiu, X. Hu, W. Song, D. Xiang, and J. Zhang, Stable and scalable multistage terahertz-driven particle accelerator, Phys. Rev. Lett., 127, 074801 (2021).
  17. S. N. Galyamin, A. V. Tyukhtin, S. Antipov, and S. S. Baturin, Terahertz radiation from an ultra-relativistic charge exiting the open end of a waveguide with a dielectric layer, Opt. Express, 22, 8902 (2014).
  18. D. Wang, X. Su, Y. Du, Q. Tian, Y. Liang, L. Niu, W. Huang, W. Gai, L. Yan, C. Tang, and S. Antipov, Nonperturbing THz generation at the Tsinghua university accelerator laboratory 31 MeV electron beamline, Review of Scientific Instruments, 89, 093301 (2018).
  19. L. Zhao, H. Tang, C. Lu, T. Jiang, P. Zhu, L. Hu, W. Song, H. Wang, J. Qiu, C. Jing, S. Antipov, D. Xiang, and J. Zhang, Femtosecond relativistic electron beam with reduced timing jitter from Thz driven beam compression, Phys. Rev. Lett., 124, 054802 (2020).
  20. S. Jiang, W. Li, Z. He, Q. Jia, and L. Wang, Intrinsically reducing divergence angle of Cherenkov radiation from dielectric capillary, Opt. Lett., 45, 5416 (2020).
  21. G. Voskresenskii and S. Zhurav, Radiotekhnika i Electronika, 12, 2608 (1976).
  22. G. Voskresenskii and S. Zhurav, Radiotekhnika i Electronika, 23, 2505 (1978).
  23. S. Koshikawa and K. Kobayashi, Diffraction by a terminated semi-infinite parallel-plate waveguide with three-layer material loading, IEEE Transactions on Antennas and Propagation, 45, 949 (1997).
  24. Y. Hame¸s and I. H. Tayyar, Radiation from dielectric-filled thick-walled parallel-plate waveguide junction loaded with a dielectric half-plane, Electromagnetics, 25, 245 (2005).
  25. R. Mittra and S. W. Lee, Analytical Techniques in the Theory of Guided Waves, (Macmillian, 1971).
  26. S. N. Galyamin, A. V. Tyukhtin, V. V. Vorobev, A. A. Grigoreva and A. S. Aryshev, Cherenkov radiation of a charge exiting open-ended waveguide with dielectric filling, Phys. Rev. Accel. Beams, 22, 012801 (2019).
  27. S. N. Galyamin, A. V. Tyukhtin and V. V. Vorobev, Radiation from open ended waveguide with dielectric loading, Nuclear Instr. Meth. Phys. Res. B, 402, 144 (2017).
  28. S. N. Galyamin, V. V. Vorobev and A. V. Tyukhtin, Diffraction at the open-ended dielectric-loaded circular waveguide: Rigorous approach, IEEE Trans. Microwave Theory Techn., 69, 2429 (2021).
  29. S. N. Galyamin and V. V. Vorobev, Diffraction at the open end of dielectric-lined circular waveguide, IEEE Trans. Microwave Theory and Techn., 70, 3087 (2022).
  30. I. H. Tayyar and A. Buyukaksoy, A Wiener-Hopf analysis of the coaxial waveguide radiator, 2011 International Conference on Electromagnetics in Advanced Applications (2011), pp. 580–583.
  31. L. Weinstein, The Theory of Diffraction and the Factorization Method: generalized Wiener-Hopf Technique, Golem Series in Electromagnetics, V. 3 (Golem Press, 1969).
  32. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (Wiley Interscience, New Jersey, 2003).
  33. Б. М. Болотовский, Д. М. Седракян, Излучение частицы от открытого конца волновода, Изв. АН Арм. ССР, 17, 119 (1964).
  34. N. Sei and T. Takahashi, First demonstration of coherent Сherenkov radiation matched to circular plane wave, Scientific Reports, 7, 17440 (2017).
  35. P. Karataev, K. Fedorov, G. Naumenko, K. Popov, A. Potylitsyn, and A. Vukolov, Ultra-monochromatic far-infrared Cherenkov diffraction radiation in a super-radiant regime, Scientific Reports, 10, 20961 (2020).
  36. R. Kieffer, L. Bartnik, M. Bergamaschi, V. V. Bleko, M. Billing, L. Bobb, J. Conway, M. Forster, P. Karataev, A. S. Konkov, R. O. Jones, T. Lefevre, J. S. Markova, S. Mazzoni, Y. Padilla Fuentes, A. P. Potylitsyn, J. Shanks, and S. Wang, Direct observation of incoherent Cherenkov diffraction radiation in the visible range, Phys. Rev. Lett., 121, 054802 (2018).
  37. S. N. Galyamin, Cherenkov Wakefield Radiation from an Open End of a Three-Layer Dielectric Capillary, arXiv.org. 2022. URL: https://doi.org/10.48550/arXiv.2205.03986.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies