VLIYaNIE KONTsENTRATsII NANOPLASTINOK CdSe V KOLLOIDNOM RASTVORE NA NELINEYNOE IZMENENIE POGLOShchENIYa

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Экспериментально исследованы особенности нелинейного поглощения коллоидных растворов нанопластинок CdSe толщиной 2.5 и 3.5 монослоя в зависимости от концентрации в случае их резонансного стационарного возбуждения наносекундными лазерными импульсами. Обнаружен рост амплитуды дифференциального пропускания и интенсивности насыщения поглощения на длинах волн экситонных переходов, связанных с тяжелыми дырками, для двух серий образцов при увеличении концентрации нанопластинок в коллоидном растворе, что объяснено процессом заполнения фазового пространства экситонов. Для коллоидных растворов нанопластинок высокой концентрации выявлена область отрицательных значений дифференциального пропускания при достаточно высокой интенсивности накачки и объяснена переходом от режима насыщения поглощения к режиму оптического усиления.

References

  1. E. Matijevic and W. D. Murphy, Preparation and Properties of Monodispersed Spherical Colloidal Particles of Cadmium Sulfide, J. Coll. Interface Sci. 86, 476 (1982).
  2. A. D. Golinskaya, A. M. Smirnov, M. V. Kozlova et al., Tunable Blue-Shift of the Charge-Transfer Photoluminescence in Tetrapod-Shaped CdTe/CdSe Nanocrystals, Results Phys. 27, 104488 (2021).
  3. A. Fiore, R. Mastria, M. G. Lupo et al., TetrapodShaped Colloidal Nanocrystals of II-VI Semiconductors Prepared by Seeded Growth, J. Am. Chem. Soc. 131, 2274 (2009).
  4. S. Ithurria and B. Dubertret, Quasi 2D Colloidal CdSe Platelets with Thicknesses Controlled at the Atomic Level, J. Am. Chem. Soc. 130, 16504 (2008).
  5. A. M. Smirnov, V. N. Mantsevich, D. S. Smirnov et al., Heavy-Hole and Light-Hole Excitons in Nonlinear Absorption Spectra of Colloidal Nanoplatelets, Sol. St. Comm. 299, 113651 (2019).
  6. A. M. Smirnov, A. D. Golinskaya, B. M. Saidzhonov et al., Exciton-Exciton Interaction and Cascade Relaxation of Excitons in Colloidal CdSe Nanoplatelets, J. Luminescence 229, 117682 (2021).
  7. A. S. Baimuratov, Y. K. Gun’ko, A. G. Shalkovskiy et al., Optical Activity of Chiral Nanoscrolls, Adv. Opt. Mat. 5, 1600982 (2017).
  8. L. V. Keldysh, Excitons in Semiconductor-Dielectric Nanostructures, Phys. Stat. Sol. (a) 164, 3 (1997).
  9. S. Malkmus, S. Kudera, L. Manna et al., ElectronHole Dynamics in CdTe Tetrapods, J. Phys. Chem. B 110, 17334 (2006).
  10. C. Heyn, L. Ranasinghe, M. Zocher et al., ShapeDependent Stark Shift and Emission-Line Broadening of Quantum Dots and Rings, J. Phys. Chem. C 124, 19809 (2020).
  11. E. Lhuillier, A. Robin, S. Ithurria et al., ElectrolyteGated Colloidal Nanoplatelets-Based Phototransistor and its Use for Bicolor Detection, Nano Lett. 14, 2715 (2014).
  12. F. Meinardi, F. Bruni, and S. Brovelli, Luminescent Solar Concentrators for the Building-Integrated Photovoltaics, Nature Rev. Mat. 2, 1 (2017).
  13. H. Lee, S. W. Yoon, J. P. Ahn et al., Synthesis of type II CdTe/CdSe heterostructure tetrapod nanocrystals for PV applications, Sol. Energy Mater. Sol. Cells 93, 779 (2009).
  14. H. Lee, S. Kim, W.-S. Chung et al., Hybrid Solar Cells Based on Tetrapod Nanocrystals: The Effects of Compositions and Type II Heterojunction on Hybrid Solar Cell Performance, Sol. Energy Mater. Sol. Cells 95, 446 (2011).
  15. Z. Chen, B. Nadal, B. Mahler et al., Quasi-2D Colloidal Semiconductor Nanoplatelets for Narrow Electroluminescence, Adv. Funct. Mat. 24, 295 (2014).
  16. F. Chen, Q. Lin, H. Shen et al., Blue Quantum Dot-Based Electroluminescent Light-Emitting Diodes, Mat. Chem. Frontiers 4, 1340 (2020).
  17. R. B. Vasiliev, D. N. Dirin, M. S. Sokolikova et al., Growth of Near-IR Luminescent Colloidal CdTe/CdS Nanoheterostructures Based on CdTe Tetrapods, Mendeleev Commun. 19, 128 (2009).
  18. B. Guzelturk, Y. Kelestemur, M. Olutas et al., Amplified Spontaneous Emission and Lasing in Colloidal Nanoplatelets, ACS Nano 8, 6599 (2014).
  19. N. E. Watkins, J. Guan, B. T. Diroll et al., Surface Normal Lasing from CdSe Nanoplatelets Coupled to Aluminum Plasmonic Nanoparticle Lattices,J. Phys. Chem. C 125, 19874 (2021).
  20. Y. Wang, V. D. Ta, Y. Gao et al., Stimulated Emission and Lasing from CdSe/CdS/ZnS CoreMulti-Shell Quantum Dots by Simultaneous ThreePhoton Absorption, Adv. Mat. 26, 2954 (2014).
  21. S. Dayal and C. Burda, Surface Effects on Quantum Dot-Based Energy Transfer, J. Am. Chem. Soc. 129, 7977 (2007).
  22. S. F. Wuister, A. van Houselt, C. de Mello Donega et al., Temperature Antiquenching of the Luminescence from Capped CdSe Quantum Dots, Angew. Chem. Int. Ed. 43, 3029 (2004).
  23. P. A. Frantsuzov and R. A. Marcus, Explanation of Quantum Dot Blinking without the Long-Lived Trap Hypothesis, Phys. Rev. B 72, 155321 (2005).
  24. A. Katsaba, V. Fedyanin, S. Ambrozevich et al., Characterization of Defects in Colloidal CdSe Nanocrystals by the Modified Thermostimulated Luminescence Technique, Semiconductors 47, 1328 (2013).
  25. M. S. Zabolotskii, A. V. Katsaba, S. A. Ambrozevich et al., Reversible and Irreversible Degradation of CdS/ZnSe Nanocrystals Capped with Oleic Acid, Phys. St. Sol. (RRL)–Rapid Res. Lett. 14, 2000167 (2020).
  26. A. V. Katsaba, S. A. Ambrozevich, V. V. Fedyanin et al., Effect of Auger Recombination in Ensemble of CdSe Nanocrystals on their Luminescence,J. Luminescence 214, 116601 (2019).
  27. M. A. Hines and P. Guyot-Sionnest, Synthesis and Characterization of Strongly Luminescing ZnSCapped CdSe Nanocrystals, J. Phys. Chem. 100, 468 (1996).
  28. S. Kumar, M. Jones, S. S. Lo et al., Nanorod Heterostructures Showing Photoinduced Charge Separation, Small 3, 1633 (2007).
  29. A. Vitukhnovsky, A. Shul’ga, S. Ambrozevich et al., Effect of Branching of Tetrapod-Shaped CdTe/CdSe Nanocrystal Heterostructures on their Luminescence, Phys. Lett. A 373, 2287 (2009).
  30. M. D. Tessier, C. Javaux, I. Maksimovic et al., Spectroscopy of Single CdSe Nanoplatelets, ACS Nano 6, 6751 (2012).
  31. P. M. Allen and M. G. Bawendi, Ternary I-III-IV Quantum Dots Luminescent in the Red to NearInfrared, J. Am. Chem. Soc. 130, 9240 (2008).
  32. S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, Theory of Transient Excitonic Optical Nonlinearities in Semiconductor Quantum-Well Structures, Phys. Rev. B 32, 6601 (1985).
  33. A. W. Achtstein, A. Schliwa, A. Prudnikau et al., Electronic Structure and Exciton-Phonon Interaction in Two-Dimensional Colloidal CdSe Nanosheets, Nano Lett. 12, 3151 (2012).
  34. E. V. Shornikova, L. Biadala, D. R. Yakovlev et al., Addressing the Exciton Fine Structure in Colloidal Nanocrystals: the Case of CdSe Nanoplatelets, Nanoscale 10, 646 (2018).
  35. J. Grim, S. Christodoulou, F. Di Stasio et al., Continious-Wave Biexciton Lasing at Room Temperature Using Solution-Processed Quantum Wells, Nature Nanotechnol. 9, 891 (2014).
  36. А. М. Смирнов, А. Д. Голинская, К. В. Ежова и др., Особенности нелинейного поглощения коллоидных растворов квантовых точек CdSe/ZnS при стационарном однофотонном возбуждении экситонов, ЖЭТФ 152, 1046 (2017).
  37. O. Svelto, Principles of Lasers, Springer New, York (2010), Vol. 620.
  38. A. M. Smirnov, A. D. Golinskaya, V. N. Mantsevich et al., Optical Gain Appearance in the CdSe/CdS Nanoplatelets Colloidal Solution, Results Phys. 32, 105120 (2022).
  39. B. M. Saidzhonov, V. B. Zaytsev, R. B. Vasiliev, Effect of PMMA Polymer Matrix on Optical Properties of CdSe Nanoplatelets, J. Luminescence 237, 1118175 (2021).

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies