SCREENED AND VAN DER WAALS INTERACTIONS IN DUSTY PLASMA AND ELECTROLYTES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Screened electrostatic and van der Waals interactions of nano- and micron-sized particles in dusty plasma were considered. The electrostatic interaction is considered on the basis of the linearized Poisson-Boltzmann equation for particles both with fixed charges uniformly distributed over their surfaces and with fixed surface electric potentials. The found solution of the problem makes it possible to study the interaction of both particles of comparable radius and particles of very different sizes. The interaction force takes into account the osmotic component, which in the case of constant charges leads to the restoration of the equality of the forces acting on the first and second particles. For the van der Waals interaction, the screening of static fluctuations and the retardation of electromagnetic fields for the dispersive part of the interaction were taken into account. Based on the analysis of various expressions for the geometric factor, taking into account the retardation of the electromagnetic field, a numerically stable method for calculating this factor was proposed. The total energy of interaction of two charged dust particles is calculated for plasma parameters characteristic of dusty plasma: the electron and ion number densities from 108 to 1012 cm-3, the particle radius from 10 nm to 1 μm and the particle charges from 10 to 103 elementary charges per micron of particle radius.

About the authors

A. V. Filippov

State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research; Joint Institute for High Temperatures of the Russian Academy of Sciences

Author for correspondence.
Email: fav@triniti.ru
Russian Federation, 108842, Troitsk, Moscow; 125412, Moscow

References

  1. J. N. Israelachvili, Intermolecular and surface forces, 3rd ed., Elsevier, Amsterdam (2011), p.191–499.
  2. B. Honig and A. Nicholls, Science 268, 1144 (1995).
  3. I. Ledezma-Yanez,W. D. Z. Wallace, P. Sebasti´an-Pascual, V. Climent, J. M. Feliu, and M. T. Koper, Nat. Energy 2 (4), 17031 (2017).
  4. B. Smit, J. A. Reimer, C. M. Oldenburg, and I. C. Bourg, Introduction to Carbon Capture and Sequestration, v.1., World Scientific, Singapore (2014).
  5. M. Manciu and E. Ruckenstein, Langmuir 17, 7061 (2001).
  6. H. Wennerstrom, E. Vallina Estrada, J. Danielsson, and M. Oliveberg, Proc. Natl. Acad. Sci. USA 117, 10113 (2020).
  7. S. Su, I. Siretanu, D. van den Ende, B.Mei, G.Mul, and F. Mugele, Adv. Mater. 33, 2106229 (2021).
  8. D. F. Parsons, M. Bostr¨om, P. L. Nostro, and B. W. Ninham, Phys. Chem. Chem. Phys. 13 (27), 12352 (2011).
  9. K. Vo¨ıtchovsky, J. J. Kuna, S. A. Contera, E. Tosatti, and F. Stellacci, Nat. Nanotechnol. 5, 401 (2010).
  10. В. Н. Цытович, УФН 167, 57 (1997).
  11. В. Е. Фортов, А. Г. Храпак, С. А. Храпак, В. И. Молотков, О. Ф. Петров, УФН 174, 495 (2004).
  12. В. И. Молотков, О. Ф. Петров, М. Ю. Пустыльник, В. М. Торчинский, В. Е. Фортов, А. Г. Храпак, ТВТ 42, 821 (2004).
  13. S. V. Vladimirov, K. Ostrikov, and A. A. Samarian, Physics and Applications of Complex Plasmas, London, Imperial College Press (2005).
  14. V. E. Fortov, A. V. Ivlev, S. A. Khrapak, A. G. Khrapak, and G. E. Morfill, Phys. Rep. 421, 1 (2005).
  15. G. E. Morfill and A. V. Ivlev, Rev. Mod. Phys. 81, 1353 (2009).
  16. M. Bonitz, C. Henning, and D. Block, Rep. Prog. Phys. 73, 066501 (2010).
  17. Комплексная и пылевая плазма: из лаборатории в космос, под ред. В. Фортова, Г. Морфилла, Наука, Физматлит, Москва (2012).
  18. A. Ivlev, H. Lowen, G. Morfill, and C.P. Royall, Complex Plasmas and Colloidal Dispersions: Particle-Resolved Studies of Classical Liquids and Solids, Series in Soft Condensed Matter, vol. 5, World Scientific, Singapore (2012).
  19. I. Mann, N. Meyer-Vernet, and A. Czechowski, Phys. Rep. 536, 1 (2014).
  20. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics, CRC Press, Bristol and Philadelphia (2015).
  21. А. В. Ивлев, С .А. Храпак, В. И. Молотков, А. Г. Храпак, Введение в физику пылевой и комплексной плазмы. Учебное пособие, Издательский дом «Интеллект», Долгопрудный (2017).
  22. А. М. Липаев, В. И. Молотков, Д. И. Жуховицкий, В. Н. Наумкин, А. Д. Усачев, А. В. Зобнин, О. Ф. Петров, В. Е. Фортов, ТВТ 58 (4), 485 (2020).
  23. I. M. Kennedy and S. J. Harris, J. Colloid. Interface. Sci. 130, 489 (1989).
  24. P. Patra and A. Roy, Phys. Rev. Fluids 7, 064308 (2022).
  25. T. B. Jones and T. B. Jones, Electromechanics of Particles, Cambridge University Press, Cambridge (2005).
  26. A. Castellanos, Adv. Phys. 54, 263 (2005).
  27. J. Feng, G. Biskos, and A. Schmidt-Ott, Scient. Rep. 5, 1 (2015).
  28. F. Greiner, A. Melzer, B.Tadsen, S. Groth, C. Killer, F. Kirchschlager, F. Wieben, I. Pilch, H. Kruger, D. Block, A. Piel, and S. Wolf, Eur. Phys. J. D 72, 81 (2018).
  29. A. R. Wassel, M. E. El-Naggar, and K. Shoueir, J. Environ. Chem. Eng. 8 104175, (2020).
  30. X. Meng, J. Zhu, and J. Zhang, J. Phys. D 42, 065201 (2009).
  31. V. A. Turek, M. P. Cecchini, J. Paget, A. R. Kucernak, A. A. Kornyshev, and J. B. Edel, ACS Nano 6, 7789 (2012).
  32. P.-P. Fang, S. Chen, H. Deng, M. D. Scanlon, F. Gumy, H. J. Lee, D. Momotenko, V. Amstutz, F. Cort´es-Salazar, C. M. Pereira, Z. Yang, and H. H. Girault, ACS Nano 7, 9241 (2013).
  33. J. B. Edel, A. A. Kornyshev, and M. Urbakh, ACS Nano 7, 9526 (2013).
  34. B. Gady, D. Schleef, R. Reifenberger, D. Rimai, and L. P. DeMejo, Phys. Rev. B 53, 8065 (1996).
  35. B. Gady, R. Reifenberger, D. S. Rimai, and L.P. DeMejo, Langmuir 13, 2533 (1997).
  36. Y. Liu, C. Song, G. Lv, N. Chen, H. Zhou, and X. Jing, Appl. Surf. Sci. 433, 450 (2018).
  37. M. C. Stevenson, S. P. Beaudoin, and D. S. Corti, J. Phys. Chem. C 124 3014 (2020).
  38. M.C. Stevenson, S.P. Beaudoin, and D.S. Corti, J. Phys. Chem. C 125 20003 (2021).
  39. H. Zhou, M. G¨otzinger, and W. Peukert, Powder Technol. 135–136, 82 (2003).
  40. Y. Gao, E. Tian, and J. Mo, ACS ES and Eng. 1, 1449 (2021).
  41. N. M. Kovalchuk, D. Johnson, V. Sobolev, N. Hilal, and V. Starov, Adv. Colloid. Interface. Sci. 272, 102020 (2019).
  42. B. V. Derjaguin, N. V. Churaev, and V. M. Muller, Surface Forces, Consultants Bureau, New York (1987).
  43. E. J. W. Verwey and J. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam (1948).
  44. A. B. Glendinning and W. B. Russel, J. Colloid Interface Sci.93, 95 (1983).
  45. S. L. Carnie, D. Y. C. Chan, J. Colloid. Interf. Sci. 161, 260 (1993).
  46. А. В. Филиппов, И. Н. Дербенев, ЖЭТФ 150, 1262 (2016).
  47. I. N. Derbenev, A. V. Filippov, A. J. Stace, and E. Besley, J. Chem. Phys. 145, 084103 (2016).
  48. А. В. Филиппов, И. Н. Дербенев, А. А. Паутов, М. М. Родин, ЖЭТФ, 152, 607 (2017).
  49. I. N. Derbenev, A. V. Filippov, A.J. Stace, and E. Besley, Soft Matter 14, 5480 (2018).
  50. S. V. Siryk, A. Bendandi, A. Diaspro, and W. Rocchia, J. Chem. Phys. 155, 114114 (2021).
  51. S. V. Siryk and W. Rocchia, J. Phys. Chem. B 126, 10400 (2022).
  52. Y.-K. Yu, Phys. Rev. E 102, 052404 (2020).
  53. O. I. Obolensky, T. P. Doerr, and Y.-K. Yu, Eur. Phys. J. E 44, 129 (2021).
  54. W. R. Bowen and F. Jenner, Adv. Colloid Interface Sci. 56, 201 (1995).
  55. J. I. Kilpatrick, S.-H. Loh, and S. P. Jarvis, J. Am. Chem. Soc. 135, 2628 (2013).
  56. S. R. Van Lin, K. K. Grotz, I. Siretanu, N. Schwierz, and F. Mugele, Langmuir 35, 5737 (2019).
  57. A. Klaassen, F. Liu, F. Mugele, and I. Siretan, Langmuir 38, 914 (2022).
  58. А. В. Филиппов, В.М. Старов, Письма в ЖЭТФ 117, 604 (2023).
  59. A. V. Filippov and V. Starov, J. Phys. Chem. B 127, 6562 (2023).
  60. А. В. Филиппов, ЖЭТФ 136, 601 (2009).
  61. A. V. Filippov, Contr. Plasma Phys. 49, 433 (2009).
  62. В. Р. Муниров, А. В. Филиппов, ЖЭТФ 144, 931 (2013).
  63. А. В. Филиппов, Письма в ЖЭТФ 115, 197 (2022).
  64. А. В. Филиппов, ЖЭТФ 161, 691 (2022).
  65. P. Debye and E. H¨uckel, Phys. Zeitschr. 24, 185 (1923).
  66. Г. Карслоу, Д. Егер, Теплопроводность твердых тел, Наука, Москва (1964)
  67. Г. Н. Ватсон, Теория бесселевых функций, Иностранная литература, Москва (1949), т.1.
  68. D. Langbein, Theory of Van der Waals Attraction, Springer Tracts in Modern Physics, Vol. 72, ed. by G. Hohler, Springer-Verlag, Berlin–Heidelberg–New York (1974).
  69. В. В. Батыгин, И. Н. Топтыгин, Сборник задач по электродинамике, Наука, Москва (1970).
  70. В. Смайт, Электростатика и электродинамика, Издателство иностарнной литературы, Москва (1954).
  71. В .Р. Муниров, А. В. Филиппов, ЖЭТФ 142, 594 (2012).
  72. E. S. Reiner, C. J. Radke, J. Chem. Soc. Faraday Trans.86, 3901 (1990).
  73. M. K. Gilson, M. E. Davis, B. A. Luty, and J. A. McCammon, J. Phys. Chem. 97, 3591 (1993).
  74. B. Lu, X. Cheng, T. Hou, and J. A. McCammon, J. Chem. Phys. 123, 084904 (2005).
  75. W. H. Press, W. T. Vetterling, S. A. Teukolsky, and B. P. Flannery, Numerical Recipes Example Book (FORTRAN), Cambridge University Press, Cambridge (1992).
  76. H. C. Hamaker, Physica 4, 1058 (1937).
  77. H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).
  78. Е. М. Лифшиц, ЖЭТФ 29, 94 (1955).
  79. И. Е. Дзялошинский, Е. М. Лифшиц, Л.П. Питаевский, ЖЭТФ 37, 229 (1959).
  80. Б. В. Дерягин, И. И. Абрикосова, Е. М. Лифшиц, УФН 185, 981 (2015).
  81. Ю. С. Бараш, В. Л. Гинзбург, УФН 143 , 345 (1984).
  82. Н. В. Чураев, Успехи химии 73, 26 (2004).
  83. D. J. Mitchell and B. W. Ninham, J. Chem. Phys. 56, 1117 (1972).
  84. R. G. Horn and J. N. Israelachvili, J. Chem. Phys. 75, 1400 (1981).
  85. J. Th. G. Overbeek, in Colloid Science, ed. By H. R. Kruyt, Vol. 1, p. 266, Elsevier, Amsterdam (1952).
  86. B. Vincent, J. Colloid. Interf. Sci. 42, 270 (1973).
  87. P. G¨orner and J. Pich, J. Aerosol Sci. 20, 735 (1989).
  88. J. Chen and A. Anandarajah, J. Colloid. Interf. Sci. 180, 519 (1996).
  89. G. Sh. Boltachev, N. B. Volkov, and K. A. Nagayev, J. Colloid. Interf. Sci. 355, 417 (2011).
  90. S. R. Gomes de Sousa, A. Leonel, and A. J. F. Bombard, Smart Mater. Struct. 29, 055039 (2020).
  91. А. А. Радциг, Б. М. Смирнов,Справочник по атомной и молекулярной физике, Атомиздат, Москва (1980).
  92. А. В. Филиппов, Н. А. Дятко, А. С. Костенко, ЖЭТФ 146, 1122–1134 (2014).
  93. А.В. Филиппов, В.Н. Бабичев, А. Ф. Паль, А. Н. Старостин, В. Е. Черковец, В. К. Рерих, М. Д. Таран, Физика плазмы 41, 969 (2015).
  94. W. Gautschi and J. Slavik, Math. Comput. 32, 865 (1978).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».