STRONG EXCITATION OF THE ELECTRONIC SUBSYSTEM OF GOLD BY AN ULTRASHORT LASER PULSE AND RELAXATION PROCESSES NEAR THE MELTING TEMPERATURE
- Authors: Inogamov N.A.1,2,3, Khokhlov V.A.1,3, Romashevskiy S.A.3, Petrov Y.V.1, Ovchinnikov M.A.3, Ashitkov S.I3
-
Affiliations:
- Landau Institute for Theoretical Physics of Russian Academy of Sciences (ITP)
- The Federal State Unitary Enterprise Dukhov Automatics Research Institute (VNIIA)
- Joint Institute for High Temperatures of Russian Academy of Sciences (JIHT)
- Issue: Vol 165, No 2 (2024)
- Pages: 165-190
- Section: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/256477
- DOI: https://doi.org/10.31857/S0044451024020032
- ID: 256477
Cite item
Abstract
Femtosecond lasers are widely used in scientific research and modern technologies. When applied to metals, ultrashort optical laser radiation produces a pronounced two-temperature state with hot electrons: Te >> Ti, where Te and Ti are the temperatures of the electron and lattice subsystems. Our experimental measurements were carried out using phase-sensitive (lock-in) detection technique on bulk and film (100 nm thick) gold targets. Due to the fact that in our experiments the repetition rate of heating (pump) pulses was reduced to 31 Hz, we were able to reach lattice temperatures near the melting point of gold. This occurs at the exit of the two-temperature stage in bulk targets. As we know, at the end of this stage, the temperatures converge, Te ≈ Ti. In bulk targets, at the highest fluences we achieved, the peak electron temperature increases to values around 20 kK. Theoretical calculations available in the literature give certain dependences for the electron-phonon coupling parameter a and the electron thermal conductivity coefficient k; they are the key parameters that characterize the two-temperature state. Our experiments showed that in the range of fluences with peak temperatures Te above 10 kK and up to 20 kK, the measured values of a and k are significantly lower than than the values given by theories. Below this range of fluences, i.e., when the peak Te is less than 10 kK, our measured values are in agreement with previous data. This is the first result of the paper. In addition, it is shown that at one-temperature stage, when the thermal energy stored in the electrons is very small, there is a significant influence of the fundamentally two-temperature coefficient a on heat transfer from the skin layer. This is due to the relatively small thickness of the heated layer, which is of the order of 200-300 nm in gold.
About the authors
N. A. Inogamov
Landau Institute for Theoretical Physics of Russian Academy of Sciences (ITP); The Federal State Unitary Enterprise Dukhov Automatics Research Institute (VNIIA); Joint Institute for High Temperatures of Russian Academy of Sciences (JIHT)
Email: nailinogamov@gmail.com
Russian Federation, 142432 Moscow Region, Chernogolovka; 127055 Moscow; 125412 Moscow
V. A. Khokhlov
Landau Institute for Theoretical Physics of Russian Academy of Sciences (ITP); Joint Institute for High Temperatures of Russian Academy of Sciences (JIHT)
Email: nailinogamov@gmail.com
Russian Federation, 142432 Moscow Region, Chernogolovka; 125412 Moscow
S. A. Romashevskiy
Joint Institute for High Temperatures of Russian Academy of Sciences (JIHT)
Email: nailinogamov@gmail.com
Russian Federation, 125412 Moscow
Yu. V. Petrov
Landau Institute for Theoretical Physics of Russian Academy of Sciences (ITP)
Email: nailinogamov@gmail.com
Russian Federation, 142432 Moscow Region, Chernogolovka
M. A. Ovchinnikov
Joint Institute for High Temperatures of Russian Academy of Sciences (JIHT)
Email: nailinogamov@gmail.com
Russian Federation, 125412, Moscow
S. I Ashitkov
Joint Institute for High Temperatures of Russian Academy of Sciences (JIHT)
Author for correspondence.
Email: nailinogamov@gmail.com
Russian Federation, 125412, Moscow
References
- A.B. Cherepakhin, D.V. Pavlov, I. I. Shishkin et al., Appl.Phys. Lett. 117, 041108 (2020).
- S. I. Kudryashov, A.A. Samokhvalov, Ya.D. Golubev et al., Appl. Surf. Sci. 537, 147940 (2021).
- K. Kaleris, E. Kaniolakis-Kaloudis, E. Kaselouris et al., Appl.Phys.A 129, 527 (2023).
- S.A. Romashevskiy, A. I. Ignatov, V.V. Zhakhovsky et al., Appl. Surf. Sci. 615, 156212 (2023).
- T. Kawashima, T. Sano, A. Hirose et al., J.Mater. Process.Technol.262, 111 (2018).
- U. Trdan, T. Sano, D. Klobcar et al., Corrosion Sci. 143, 46 (2018).
- Н.А. Иногамов, Е.А. Перов, В.В.Жаховский и др., Письма в ЖЭТФ 115, 80 (2022).
- В.А. Хохлов, В.В.Жаховский, Н.А. Иногамов и др., Письма в ЖЭТФ 115, 576 (2022).
- V. Zhakhovsky, Yu. Kolobov, S. Ashitkov et al., Phys. Fluids 35, 096104 (2023).
- С.И. Анисимов, Б.Л. Капелиович, Т.Л. Перельман, ЖЭТФ 66, 776 (1974).
- W. S. Fann, R. Storz, H.W.K. Tom, and J. Bokor, Phys.Rev. Lett. 68, 2834 (1992).
- C.-K. Sun, F. Vall´ee, L.H. Acioli et al., Phys. Rev.B 50, 15337 (1994).
- J. Hohlfeld, S.-S. Wellershoff, J. Guedde et al., Chem.Phys. 251, 237 (2000).
- N. Del Fatti, C. Voisin, M. Achermann et al., Phys.Rev.B 61, 16956 (2000).
- A.N. Smith and P.M. Norris, Appl.Phys. Lett. 78, 1240 (2001).
- P.E. Hopkins, J.M. Klopf, and P.M. Norris, Appl. Opt. 46, 2076 (2007).
- Yu.V. Petrov, K.P. Migdal, N.A. Inogamov, and V.V. Zhakhovsky, Appl.Phys.B 119, 401 (2015).
- Ю.В. Петров, К.П. Мигдал, Н.А. Иногамов, С.И. Анисимов, Письма в ЖЭТФ 104, 446 (2016).
- B.Y. Mueller and B. Rethfeld, Phys.Rev.B 87, 035139 (2013).
- B. Rethfeld, D. S. Ivanov, M.E. Garcia, and S. I. Anisimov, J.Phys.D 50, 193001 (2017).
- А.А. Абрикосов, Основы теории металлов, Москва, Наука (1987).
- S. Chapman and T.G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge Univ. Press (1970).
- М.И. Каганов, И.М. Лифшиц, Л.В. Танатаров, ЖЭТФ 31, 232 (1956).
- Yu.V. Petrov, Laser Part.Beams 23, 283 (2005).
- V.V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, J.Opt. Soc.Am.B 23, 1954 (2006).
- C.A. Paddock and G. L. Eesley, J.Appl.Phys. 60, 285 (1986).
- Н.А. Иногамов, В.А. Хохлов, С.А. Ромашевский и др., Письма в ЖЭТФ 117, 107 (2023).
- V.V. Temnov, C. Klieber, K.A. Nelson et al., Nature Commun. 4, 1468 (2013).
- F. Akhmetov, I. Milov, S. Semin et al., Vacuum 212, 112045 (2023).
- K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri et al., Phys.Rev. Lett. 81, 224 (1998).
- Н.А. Иногамов, В.В.Жаховский, С.И. Ашитков и др., ЖЭТФ 134, 5 (2008).
- J.C. Crowhurst, M.R. Armstrong, K.B. Knight et al., Phys.Rev. Lett. 107, 144302 (2011).
- С.И. Ашитков, П.С. Комаров, М.Б. Агранат и др., Письма в ЖЭТФ 98, 439 (2013).
- N. Hasegawa, M. Nishikino, M. Ishino et al., Springer Proc.Phys. 202, 273 (2018).
- B. Albertazzi, N. Ozaki, V. Zhakhovsky et al., Sci.Adv. 3, e160270 (2017).
- M. Z. Mo, Z. Chen, R.K. Li et al., Science 360 (6396), 1451 (2018).
- R. Fang, A. Vorobyev, and Ch. Guo, Light: Sci. Appl. 6, e16256 (2017).
- Н.А. Иногамов, А.М. Опарин, Ю.В. Петров и др., Письма в ЖЭТФ 69, 284 1999).
- В.В.Жаховский, К. Нишихара, С.И. Анисимов, Н.А. Иногамов, Письма в ЖЭТФ 71, 241 (2000).
- L.V. Zhigilei and B. J. Garrison, J.Appl.Phys. 88, 1281 (2000).
- Н.А. Иногамов, Ю.В. Петров, ЖЭТФ 137, 505 (2010).
- N.A. Smirnov, Phys.Rev.B 106, 024109 (2022).
- Zh. Lin, L.V. Zhigilei, and V. Celli, Phys.Rev.B 77, 075133 (2008).
- Н.А. Иногамов, В.В.Жаховский, В.А. Хохлов, ЖЭТФ147, 20 (2015)
- С.И. Анисимов, В.В.Жаховский, Н.А. Иногамов и др.,ЖЭТФ 156, 806 (2019).
- M.E. Povarnitsyn, T.E. Itina, P.R. Levashov, and K.V. Khishchenko, Phys.Chem.Chem.Phys. 15, 3108 (2013).
- A. Block, R. Yu, Ieng-Wai Un et al., ACS Photonics 10, 1150 (2023).
- Ю.В. Петров, Н.А. Иногамов, К.П. Мигдал, Письма в ЖЭТФ 97, 24 (2013).
- S. I. Ashitkov, P. S. Komarov, V.V. Zhakhovsky et al., J.Phys.: Conf. Ser. 774, 012097 (2016).
- A. Block, M. Liebel, R. Yu et al., Sci.Adv. 5, eaav8965 (2019).
- M. Segovia and X. Xu, Nano Lett. 21, 7228 (2021).
- G. Gao, L. Jiang, B. Xue et al., Small Methods 7, 2201260 (2023).
- N.A. Inogamov, V.V. Zhakhovsky, S. I. Ashitkov et al., Contrib.Plasma Phys. 51, 367 (2011).
- N.A. Inogamov and V.V. Zhakhovsky, J.Phys.: Conf. Ser. 681, 012001 (2016).
- N.A. Inogamov, V.V. Zhakhovsky, V.A. Khokhlov et al., J.Phys.: Conf. Ser. 774, 012102 (2016).
- V.V. Shepelev and N.A. Inogamov, J.Phys: Conf. Ser. 946, 012010 (2018).
- J.M. Liu, Opt. Lett. 7, 196 (1982).
- S. I. Kudryashov, A.A. Samokhvalov, Ya.D. Golubev et al., Appl. Surf. Sci. 537, 147940 (2021).
- S. I. Ashitkov, N.A. Inogamov, P. S. Komarov et al., High Temp. 60, 192 (2022).
- S. Babar and J.H. Weaver, Appl.Opt. 54, 477 (2015).
- H. Reddy, U. Guler, A.V. Kildishev et al., Opt. Mater.Express 6, 2776 (2016).
Supplementary files
