ENERGY, MOMENTUM, AND ANGULAR MOMENTUM OF ELECTROMAGNETIC FIELD IN A MEDIUM WITH NONLOCAL OPTICAL RESPONSE UNDER FREQUENCY-DEGENERATE NONLINEAR WAVE INTERACTION
- Authors: Ryzhikov P.S.1, Makarov V.A.1
-
Affiliations:
- Lomonosov Moscow State University, Faculty of Physics
- Issue: Vol 165, No 2 (2024)
- Pages: 152-164
- Section: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/256476
- DOI: https://doi.org/10.31857/S0044451024020020
- ID: 256476
Cite item
Abstract
The expressions for the additional terms to the electromagnetic field energy density, energy flux density, momentum density, momentum flux density, components of angular momentum density and components of anglular momentum flux density tensor in a medium with nonlocality of the n-th order nonlinear optical response are obtained from the Maxwell equations system for the case when the number of the interacting waves with different frequencies is less than or equal to n (frequency-degenerate processes). It is shown that the intrinsic symmetry relations between the components of both local and nonlocal nonlinear susceptibility tensors make it impossible to obtain the correct formulas for the aforementioned fundamental characteristics of the electromagnetic field as a particular case of the already known expressions for these quantities related to the nonlinear interaction of n + 1 waves with absolutely different frequencies if we put some frequencies equal to each other. As an example, we discuss the obtained additional terms caused by nonlocal nonlinear optical response of the medium in cases of self-focusing, second- and third-harmonic generation.
About the authors
P. S. Ryzhikov
Lomonosov Moscow State University, Faculty of Physics
Author for correspondence.
Email: ryzhikov.ps14@physics.msu.ru
Russian Federation, 119991 GSP-1, 1-2 Leninskiye Gory, Moscow
V. A. Makarov
Lomonosov Moscow State University, Faculty of Physics
Email: ryzhikov.ps14@physics.msu.ru
Russian Federation, 119991 GSP-1, 1-2 Leninskiye Gory, Moscow
References
- Л.Д. Ландау, Е.М. Лифшиц, Теоретическая физика. Том 8. Электродинамика сплошных сред, Физматлит, Москва (2005).
- И.Н. Топтыгин, К. Левина, УФН 186, 141 (2016).
- I.Campos-Flores, J. L. Jim´enez-Ram´ırez, and J.Roa Neri, J. Electromagn.Anal.Appl. 9, 203 (2017).
- D.E. Soper, Classical Field Theory. Dover Publications, New York (2008).
- S.M. Barnett, J.Opt.B: Quantum and Semiclassical Optics 4, S7 (2002).
- В.П. Макаров, А.А. Рухадзе, УФН 181, 1357 (2011).
- S. Stallinga, Phys.Rev.E 73, 026606 (2006).
- O. Yamashita, Optik 122, 2119 (2011).
- В.М. Агранович, В.Л. Гинзбург, Кристаллооптика с учетом пространственной дисперсии и теория экситонов, Наука, Москва (1965).
- P.W. Milonni and R.W. Boyd, Adv.Opt.Photon. 2, 519 (2010).
- C. Heredia and J. Llosa, J. Phys.Commun. 5, 055003 (2021).
- R. Boyd, Nonlinear Optics. Elsevier, Amsterdam (2020).
- S. Serulnik and Y. Ben-Aryeh, Quantum Optics: J. Europ.Opt. Soc. Part B 3, 63 (1991).
- G. Moe and W. Happer, J.Phys.B: Atomic and Molecular Physics 10, 1191 (1977).
- С.А. Ахманов, С.Ю. Никитин, Физическая оптика, Наука, Москва (2004).
- S.M. Barnett, Phys.Rev. Lett. 104, 070401 (2010)
- A. Willner, H. Huang, Y. Yan et al., Adv.Opt.Photonics 7, 66 (2015).
- A. Trichili, C. Rosales-Guzm´an, A. Dudley et al., Sci.Rep. 6, 27674 (2016).
- V. D’Ambrosio, E. Nagali, S. Walborn et al., Nature Commun. 3, 961 (2012).
- W. Brullot, M. Vanbel, T. Swusten et al., Science Advances 2, e1501349 (2016).
- P. Polimeno, A. Magazz`u, M. Iat`ı et al., J.Quant. Spectr.Radiat.Trans. 218, 131 (2018).
- Y. Tian, L. Wang, and G. Duan, Opt.Commun. 485, 126712 (2020).
- M. Padgett and R. Bowman, Nature Photonics 5, 343 (2011).
- S. Franke-Arnold, L. Allen and M. Padgett, Laser and Photonics Rev. 2, 299 (2008).
- A. Yao and M. Padgett, Adv.Opt.Photonics 3, 161 (2011).
- M. Ritsch-Marte, Phil. Trans. Roy. Soc. A 375, 20150437 (2017).
- П.С. Рыжиков, В.А. Макаров, ЖЭТФ 162, 45 (2022).
- P. S. Ryzhikov and V.A. Makarov, Laser Phys. Lett. 19, 115401 (2022).
- Y.R. Shen, Principles of Nonlinear Optics, Wiley, New York (1984).
- P. S. Ryzhikov and V.A. Makarov, Laser Phys. Lett. 20, 105401 (2023).
- S.V. Popov, Yu.P. Svirko, and N. I. Zheludev, Susceptibility Tensors for Nonlinear Optics. Taylor and Francis, New York (2015).
- Y.P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics. Wiley, New York (1998).
- P. S. Ryzhikov and V.A. Makarov, Laser Phys. Lett. 19, 035401 (2022).
Supplementary files
