Inzhektsiya spina dvizhushcheysya domennoy stenkoy na granitse razdela antiferromagnitnogo izolyatora s dvumernym metallom

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A domain wall (DW) which moves parallel to a magnetically compensated interface between an antiferromagnetic insulator (AFMI) and a two-dimensional (2D) metal can pump spin polarization into the metal. It is assumed that localized spins of a collinear AFMI interact with itinerant electrons through their exchange interaction on the interface. We employed the Keldysh formalism of Green’s functions for electrons which experience potential and spin-orbit scattering on random impurities. This formalism allows a unified analysis of spin pumping, spin diffusion and spin relaxation effects on a 2D electron gas. It is shown that the pumping of a nonstaggered magnetization into the metal film takes place in the second order with respect to the interface exchange interaction. At sufficiently weak spin relaxation this pumping effect can be much stronger than the first-order effect of the Pauli magnetism which is produced by the small nonstaggered exchange field of the DW. It is shown that the pumped polarization is sensitive to the geometry of the electron’s Fermi surface and increases when the wave vector of the staggered magnetization approaches the nesting vector of the Fermi surface. In a disordered diffusive electron gas the induced spin polarization follows the motion of the domain wall. It is distributed asymmetrically around the DW over a distance which can be much larger than the DW width.

About the authors

A. G. Mal'shukov

Institute of Spectroscopy, Russian Academy of Sciences

Author for correspondence.
Email: malsh@isan.troitsk.ru
108840, Troitsk, Moscow, Russia

References

  1. V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak, Rev. Mod. Phys. 90, 015005 (2018).
  2. O. Gomonay, V. Baltz, A. Brataas, and Y. Tserkovnyak, Nat. Phys. 14, 213 (2018).
  3. H. Yan, Z. Feng, P. Qin, X. Zhou, H. Guo, X. Wang, H. Chen, X. Zhang, H. Wu, C. Jiang, and Z. Liu, Adv. Materials 32, 1905603 (2020).
  4. P. Wadley, B. Howells, J. ˇZelezn'y, C. Andrews, V. Hills, R. P. Campion, V. Novak, K. Olejnik, F. Maccherozzi, S. S. Dhesi, S. Y. Martin, T. Wagner, J. Wunderlich, F. Freimuth, Y. Mokrousov, J. Kunes, J. S. Chauhan, M. J. Grzybowski, A. W. Rushforth, K. W. Edmonds, B. L. Gallagher, and T. Jungwirth, Science 351, 587 (2016).
  5. J. ˇZelezn'y, H. Gao, K. V'yborn'y, J. Zemen, J. Maˇsek, A. Manchon, J. Wunderlich, J. Sinova, and T. Jungwirth, Phys. Rev. Lett. 113, 157201 (2014).
  6. R. Cheng, J. Xiao, Q. Niu, and A. Brataas, Phys. Rev. Lett. 113, 057601 (2014).
  7. H. B. M. Saidaoui, A. Manchon, and X. Waintal, Phys. Rev. B 89, 174430 (2014).
  8. A. C. Swaving and R. A. Duine, Phys. Rev. B 83, 054428 (2011).
  9. S. Takei, B. I. Halperin, A. Yacoby, and Y. Tserkovnyak, Phys. Rev. B 90, 094408 (2014).
  10. A. S. N'unez, R. A. Duine, P. M. Haney, and A. H. MacDonald, Phys. Rev. B 73, 214426 (2006).
  11. Y. Ohnuma, H. Adachi, E. Saitoh, and S. Maekawa, Phys. Rev. B 89, 174417 (2014).
  12. P. Zhang, C. T. Chou, H. Yun, B. C. McGoldrick, J. T. Hou, K. A. Mkhoyan, and L. Liu, arXiv:2201.04732.
  13. E. Cogulu, H. Zhang, N. N. Statuto, Y. Cheng, F. Yang, R. Cheng, and A. D. Kent, arXiv:2112.12238.
  14. K. A. Omari, L. X. Barton, O. Amin, R. P. Campion, A. W. Rushforth, P. Wadley, and K. W. Edmonds, J. Appl. Phys. 127, 193906 (2020).
  15. L. Frangou, S. Oyarzun, S. Auffret, L. Vila, S. Gambarelli, and V. Baltz, Phys. Rev. Lett. 116, 077203 (2016).
  16. P. Vaidya, S. A. Morley, J. Tol, Y. Liu, R. Cheng, A. Brataas, D. Lederman, and E. Barco, Science 368, 160 (2020).
  17. J. Li, C. B. Wilson, R. Cheng, M. Lohmann, M. Kavand, W. Yuan, M. Aldosary, N. Agladze, P. Wei, M. S. Sherwin, and J. Shi, Nature 578, 70 (2020).
  18. H. Wang, Y. Xiao,M. Guo, E. L.Wong, G. Q. Yan, R. Cheng, and C. R. Du, Phys. Rev. Lett. 127, 117202 (2021).
  19. R. Lebrun, A. Ross, S. A. Bender, A. Qaiumzadeh, L. Baldrati, J. Cramer, A. Brataas, R. A. Duine, and M. Kl¨aui, Nature 561, 222 (2018).
  20. O. Gomonay, T. Jungwirth, and J. Sinova, Phys. Rev. Lett. 117, 017202 (2016).
  21. S. K. Kim, G. S. D. Beach, K.-J. Lee, T. Ono, Th. Rasing, and H. Yang, Nat. Mater. 21, 24 (2022).
  22. C. O. Avci, E. Rosenberg, L. Caretta, F. Buttner, M. Mann, C. Marcus, D. Bono, C. A. Ross, and G. S. D. Beach, Nat. Nanotechnol. 14, 561 (2019).
  23. H. A. Zhou, Y. Dong, T. Xu, K. Xu, L. S. Tejerina, L. Zhao,Y. Ba, P. Gargiani, M. Valvidares, Y. Zhao, M. Carpentieri, O. A. Tretiakov, X. Zhong, G. Finocchio, S. K. Kim, and W. Jiang, arXiv:1912.01775.
  24. S. Velez, J. Schaab, M. S. Wornle, M. Muller, E. Gradauskaite, P. Welter, C. Gutgsell, C. Nistor, C. L. Degen, M. Trassin, M. Fiebig, and P. Gambardella, Nat. Commun. 10, 4750 (2019).
  25. Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev. Lett. 88, 117601 (2002).
  26. Л. В. Келдыш, ЖЭТФ 47, 1515 (1964)
  27. Sov. Phys. JETP 20, 1018 (1965).
  28. В. Г. Барьяхтар, Б. А. Иванов, М. В. Четкин, УФН 28, 563 (1985)
  29. Usp. Fiz. Nauk 146, 417 (1985).
  30. J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).
  31. B. L. Altshuler and A. G. Aronov, in Electron-Electron Interactions in Disordered Systems, ed. by A. L. Efros and M. Pollak, North-Holland, Amsterdam (1985), Ch. 1.
  32. E. van der Bijl, R. E. Troncoso, and R. A. Duine, Phys. Rev. B 88, 064417 (2013).
  33. А. А. Абрикосов, Л. П. Горьков,ЖЭТФ 42, 1088 (1962)
  34. A. A. Abrikosov and L. P. Gor'kov, Sov. Phys. JETP 15, 752 (1962).
  35. М. И. Дьяконов, В. И. Перель, ЖЭТФ 33, 1053 (1971)
  36. Zh. Eksp. Teor. Fiz. 60, 1954 (1971).
  37. N. L. Schryer and L. R. Walker, J. Appl. Phys. 45, 5406 (1974).
  38. A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Phys. Rep. 194, 117 (1990).
  39. S. K. Kim, Y. Tserkovnyak, and O. Tchernyshyov, Phys. Rev. B 90, 104406 (2014).
  40. E. G. Tveten, A. Qaiumzadeh, and A. Brataas, Phys. Rev. Lett. 112, 147204 (2014).
  41. А. Г. Аронов, Письма в ЖЭТФ 24, 37 (1976)
  42. Sov. Phys. JETP Lett. 24, 32 (1976).
  43. M. Johnson and R. H. Silsbee, Phys. Rev. B 37, 5312 (1988).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies