Interatomic Interaction at the Al–TiC Interface

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The interaction of a titanium carbide nanoparticle with aluminum (100), (110), and (111) substrates is investigated within the density functional theory. The nanoparticle–substrate interaction energies are determined; the electron density distribution and the electron localization function between aluminum, titanium, and carbon atoms are analyzed. It has been established that the atoms in the upper layers of the aluminum (100) and (110) substrates are significantly displaced relative to their initial positions as a result of the interaction with the nanoparticle, whereas a minor displacement of atoms is typical for the (111) substrate. The interaction between aluminum and carbon atoms at the Al–TiC interface is due to the formation of covalent Al–C chemical bonds. The aluminum atoms forming carbide bonds do not form chemical bonds with titanium atoms. The aluminum atoms that are adjacent to the titanium atoms and are not involved in the formation of carbide bonds form metallic Al–Ti bonds.

About the authors

V. V. Reshetnyak

Troitsk Institute for Innovation and Fusion Research;
Joint Institute for High Temperatures, Russian Academy of Sciences; Vladimir State University

Email: viktor.reshetnyak84@gmail.com
108840, Troitsk, Moscow, Russia; 125412, Moscow, Russia; 600000, Vladimir, Russia

A. V. Aborkin

Vladimir State University

Email: viktor.reshetnyak84@gmail.com
600000, Vladimir, Russia

A. V. Filippov

Troitsk Institute for Innovation and Fusion Research;
Joint Institute for High Temperatures, Russian Academy of Sciences

Author for correspondence.
Email: viktor.reshetnyak84@gmail.com
108840, Troitsk, Moscow, Russia; 125412, Moscow, Russia

References

  1. I.A. Evdokimov, T.A. Chernyshova, G.I. Pivovarov, P.A. Bykov, L.A. Ivanov, and V.E. Vaganov, Inorg. Mater. Appl. Res. 5, 255 (2014).
  2. R. Casati and M. Vedani, Metals 4, 65 (2014).
  3. A.V. Aborkin, D.V. Bokaryov, S.A. Pankratov, and A.I. Elkin, Ceramics 6, 231 (2023).
  4. A.V. Aborkin, A.I. Elkin, V.V. Reshetniak, A.M. Ob'edkov, A.E. Sytschev, V.G. Leontiev, D.D. Titov, and M.I. Alymov, J. Alloys.Comp. 872, 159593 (2021).
  5. S.L. Pramod, S.R. Bakshi, and B.S. Murty, J. Mater. Eng. Perform. 24, 2185 (2015).
  6. P. Sharma and S. Ganti, Phys. Stat. Sol. B 234, R10 (2002).
  7. P. Sharma, S. Ganti, and N. Bhate, Appl. Phys. Lett. 82, 535 (2003).
  8. H.L. Duan, J. Wang, Z.P. Huang, and B.L. Karihaloo, J. Mech. Phys. Sol. 53, 1574 (2005).
  9. В.Е. Панин, Е.Е. Дерюгин, С.Н. Кульков, Прикл. мех. техн. физ. 51(4), 127 (2010).
  10. Дж. Роулинсон, Б. Уидом, Молекулярная теория капиллярности, Мир, Москва (1986).
  11. V. Reshetniak, O. Reshetniak, A. Aborkin, V. Nederkin, and A. Filippov, Nanomaterials 12, 2045 (2022).
  12. W.J. Kim and Y.J. Yu, Scripta Mater. 72-73, 25 (2014).
  13. W. Liu, C. Cao, J. Xu, X. Wang, and X. Li, Mater. Lett. 185, 392 (2016).
  14. В. И. Ролдугин, Физикохимия поверхности, Изд. дом <Интеллект>, Долгопрудный (2011).
  15. A.H. Larsen, J.J. Mortensen, J. Blomqvist et al., J. Phys. Condens. Matter 29, 273002 (2017).
  16. T.D. Ku¨hne, M. Iannuzzi, M. Del Ben et al., J. Chem. Phys. 152, 194103 (2020).
  17. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
  18. S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996).
  19. J. VandeVondele and J. Hutter, J. Chem. Phys. 127, 114105 (2007).
  20. G. Lippert, J. Hutter, and M. Parrinello, Mol. Phys. 92, 477 (1997).
  21. G. Lippert, J. Hutter, and M. Parrinello, Theor. Chem. Acc. 103, 124 (1999).
  22. A. V. Chichagov, V. A. Varlamov, R. A. Dilanyan, T. N. Dokina, N. A. Drozhzhina, O. L. Samokhvalova, and T. V. Ushakovskaya, Crystallogr. Rep. 46, 876 (2001).
  23. Дж. Най, Физические свойства кристаллов и их описание при помощи тензоров и матриц, Мир, Москва (1967).
  24. И. Н. Францевич, Упругие постоянные и модули упругости металлов и неметаллов, Наук. думка, Киев (1982).
  25. J. Sch¨ochlin, K. P. Bohnen, and K. M. Ho, Surf. Sci. 324, 113 (1995).
  26. N. E. Singh-Miller and N. Marzari, Phys. Rev. B 80, 235407 (2009).
  27. W. Tyson and W. Miller, Surf. Sci. 62, 267 (1977).
  28. L. H. Fang, L. Wang, J. H. Gong, H. S. Dai, and D. Zh. Miao, Transactions of Nonferrous Metals Society of China 20, 857 (2010).
  29. A. Vojvodic, C.Ruberto, and B. I. Lundqvist, J. Phys. Condens. Matter 22, 375504 (2010).
  30. M. G. Quesne, A. Roldan, N. H. de Leeuw, and C. R. A. Catlow, Phys. Chem. Chem. Phys. 20, 6905 (2018).
  31. L. Wang, L. H. Fang, and J. H. Gong, Transactions of Nonferrous Metals Society of China 22, 170 (2012).
  32. L. M. Liu, S. Q. Wang, and H. Q. Ye, J. Phys. Condens. Matter 15, 8103 (2003).
  33. E. A. Aguilar, C. A. Leon, A. Contreras, V. H. Lopez, R. A. L. Drew, and E. Bedolla, Composites, Part A 33, 1425 (2002).
  34. C. A. Leon, V. H. Lopez, E. Bedolla, and R. A. L. Drew, J. Mater. Sci. 37, 3509 (2002).
  35. A. Contreras, J. Colloid Interface Sci. 311, 159 (2007).
  36. Р. Бейдер, Атомы в молекулах: квантовая теория, Мир, Москва (2001).
  37. B. Silvi, I. Fourr'e, and M. E. Alikhani, Monatshefte fu¨r Chemie 136, 855 (2005).
  38. Е. В. Барташевич, В. Г. Цирельсон, Успехи химии 83, 1181 (2014).
  39. A. D. Becke and K. E. Edgecombe, J. Chem. Phys. 92, 5397 (1990).
  40. B. Silvi and A. Savin, Nature 371, 683 (1994).
  41. В. Г. Цирельсон, Квантовая химия. Молекулы, молекулярные системы и твердые тела, БИНОМ, Лаборатория знаний, Москва (2010).
  42. D. Stalke, Electron Density and Chemical Bonding I: Experimental Charge Density Studies, Springer, Berlin (2012).
  43. B. Silvi and C. Gatti, J. Phys. Chem. A 104, 947 (2000).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies