Poisk novogo mezhnuklonnogo vzaimodeystviya s pomoshch'yu poroshkovoy difraktsii neytronov

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The application of neutron powder diffraction to search for a new internucleon Yukawa-like interaction is considered. The essence of the method is in the investigation of dependency of the neutron scattering amplitude on the momentum transfer. The possible contributions to the scattering amplitude and to the integrated intensity of diffraction maxima were analyzed. The neutron diffraction experiment with silicon powder at D20 diffractometer of the ILL reactor (Grenoble, France) was performed. From the data obtained constraints on the coupling constant of the considered interaction were made. It is shown that in the interaction radius range of λ = 10–13–10—11 m they improve the values already existing in the literature. The result obtained is limited by imperfections of the experimental setup. Eliminating the instrumental contribution may allow increasing the sensitivity of the method by at least an order of magnitude.

Sobre autores

V. Voronin

Petersburg Nuclear Physics Institute, National Research Center “Kurchatov Institute”; St. Petersburg State University

Email: shapirod@mail.ru
188300, Gatchina, Russia; 199034, St. Petersburg, Russia

D. Shapiro

Petersburg Nuclear Physics Institute, National Research Center “Kurchatov Institute”; St. Petersburg State University

Email: shapirod@mail.ru
188300, Gatchina, Russia; 199034, St. Petersburg, Russia

S. Semenikhin

Petersburg Nuclear Physics Institute, National Research Center “Kurchatov Institute”

Email: shapirod@mail.ru
188300, Gatchina, Russia

T. Khansen

Institut Laue-Langevin

Autor responsável pela correspondência
Email: shapirod@mail.ru
38042, Grenoble, France

Bibliografia

  1. G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279 (2005).
  2. J. A. Frieman, M. S. Turner, and D. Huterer, Annu. Rev. Astron. Astrophys. 46, 385 (2008).
  3. M. Shifman, A. Vainshtein, and V. Zakharov, Nucl. Phys. B 166, 493 (1980).
  4. А. Д. Сахаров, Письма в ЖЭТФ 5, 32 (1967).
  5. N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429, 263 (1998).
  6. B. Abi, T. Albahri, S. Al-Kilani et al., Phys. Rev. Lett. 126, 141801 (2021).
  7. C. E. Carlson, Prog. Part. Nucl. Phys. 82, 59 (2015).
  8. D. S. Firak, A. J. Krasznahorkay, M. Csatl'os et al., EPJ Web Conf. 232, 04005 (2020).
  9. D.V. Kirpichnikov, V. E. Lyubovitskij, and A. S. Zhevlakov, Phys. Rev. D 102, 095024 (2020).
  10. J. Murata and S. Tanaka, Class. Quantum Grav. 32, 033001 (2015).
  11. M. S. Safronova, D. Budker, D. DeMille et al., Rev. Mod. Phys. 90, 025008 (2018).
  12. S. Sponar, R. Sedmik, M. Pitschmann et al., Nat. Rev. Phys. 3, 309 (2021).
  13. B. A. Dobrescu and I. Mocioiu, J. High Energy Phys. 11, 005 (2006).
  14. P. Fadeev, Y. V. Stadnik, F. Ficek et al., Phys. Rev. A 99, 022113 (2019).
  15. W. M. Snow, C. Haddock and B. Heacock, Symmetry 2022, 14, 10 (2022).
  16. Y. J. Chen, W. K. Tham, D. E. Krause et al., Phys. Rev. Lett. 116, 221102 (2016).
  17. C. Delaunay, C. Frugiuele, E. Fuchs et al., Phys. Rev. D 96, 115002 (2017).
  18. A. Fajar and H. Mugirahardjo, Atom Indonesia 36, 1 (2010).
  19. V. K. Pecharsky, Fundamentals of Powder Di raction and Structural Characterization of Materials, Springer Science+Business Media, Inc. (2003).
  20. V. F. Sears, Phys. Rep. 141, 281 (1986).
  21. T. M. Sabine, Aust. J. Phys. 38, 507 (1985).
  22. A. Io e, D. L. Jacobson, M. Arif et al., Phys. Rev. A 58, 1476 (1998).
  23. G. C. Li, M. R. Yearian, and I. Sick, Phys. Rev. C 9, 1861 (1974).
  24. J.-M. Sparenberg and H. Leeb, J. Electron Spectros. Relat. Phenomena 129, 315 (2003).
  25. E. Prince, International Tables for Crystallography, Vol. C, Kluwer Acad. Publ. Dortrecht (2004).
  26. C. Flensburg and R. F. Stewart, Phys. Rev. B 60, 1 (1999).
  27. C. Malica and A. Dal Corso, Acta Cryst. A 75, 624 (2019).
  28. В. В. Воронин, И. А. Кузнецов, Д. Д. Шапиро, Письма в ЖЭТФ 107, 3 (2018).
  29. V. V. Voronin, D. D. Shapiro, J. Surf. Investig. 14, S198 (2020) https://link.springer.com/article/10.1134/S1027451020070502.
  30. V. V. Nesvizhevsky, G. Pignol, K. V. Protasov, Phys. Rev. D 77, 034020 (2008).
  31. Y. Kamiya, K. Itagaki, M. Tani et al., Phys. Rev. Lett. 114, 161101 (2015).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies