Opticheskiy analog vrashchayushchegosya binarnogo boze-kondensata

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Coupled nonlinear Schrödinger equations for paraxial optics with two circular polarizations of light in a defocusing Kerr medium with anomalous dispersion coincide in form with the Gross–Pitaevskii equations for a binary Bose—Einstein condensate (BEC) of cold atoms in the phase separation regime. In this case, the helical symmetry of an optical waveguide corresponds to rotation of the transverse potential confining the BEC. The “centrifugal force” considerably affects the propagation of a light wave in such a system. Numerical experiments for a waveguide with an elliptical cross section have revealed characteristic structures consisting of quantized vortices and domain walls between two polarizations, which have not been observed earlier in optics.

作者简介

V. Ruban

Landau Institute of Theoretical Physics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ruban@itp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

参考

  1. Y. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, 1st ed., Academic Press, California, USA (2003).
  2. V. E. Zakharov and S. Wabnitz, Optical Solitons: Theoretical Challenges and Industrial Perspectives, Springer-Verlag, Berlin, Heidelberg (1999).
  3. B. A. Malomed, Multidimensional Solitons, AIP Publishing (online), Melville, N. Y. (2022), https://doi.org/10.1063/9780735425118
  4. F. Baronio, S. Wabnitz, and Yu. Kodama, Phys. Rev. Lett. 116, 173901 (2016).
  5. P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonz'alez, The Defocusing Nonlinear Schr¨odinger Equation: From Dark Solitons to Vortices and Vortex Rings, SIAM, Philadelphia (2015).
  6. А. Л. Берхоер, В. Е. Захаров, ЖЭТФ 58, 903 (1970).
  7. Tin-Lun Ho and V. B. Shenoy, Phys. Rev. Lett. 77, 3276 (1996).
  8. H. Pu and N. P. Bigelow, Phys. Rev. Lett. 80, 1130 (1998).
  9. B. P. Anderson, P. C. Haljan, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 85, 2857 (2000).
  10. S. Coen and M. Haelterman, Phys. Rev. Lett. 87, 140401 (2001).
  11. G. Modugno, M. Modugno, F. Riboli, G. Roati, and M. Inguscio, Phys. Rev. Lett. 89, 190404 (2002).
  12. E. Timmermans, Phys. Rev. Lett. 81, 5718 (1998).
  13. P. Ao and S. T. Chui, Phys. Rev. A 58, 4836 (1998).
  14. M. Haelterman and A. P. Sheppard, Phys. Rev. E 49, 3389 (1994).
  15. M. Haelterman and A. P. Sheppard, Phys. Rev. E 49, 4512 (1994).
  16. A. P. Sheppard and M. Haelterman, Opt. Lett. 19, 859 (1994).
  17. Yu. S. Kivhsar and B. Luther-Davies, Phys. Rep. 298, 81 (1998).
  18. N. Dror, B. A. Malomed, and J. Zeng, Phys. Rev. E 84, 046602 (2011).
  19. A. H. Carlsson, J. N. Malmberg, D. Anderson, M. Lisak, E. A. Ostrovskaya, T. J. Alexander, and Yu. S. Kivshar, Opt. Lett. 25, 660 (2000).
  20. A. S. Desyatnikov, L. Torner, and Yu. S. Kivshar, Progr. Opt. 47, 291 (2005).
  21. В. П. Рубан, Письма в ЖЭТФ 117, 292 (2023).
  22. В. П. Рубан, Письма в ЖЭТФ 117, 590 (2023).
  23. B. Van Schaeybroeck, Phys. Rev. A 78, 023624 (2008).
  24. K. Sasaki, N. Suzuki, and H. Saito, Phys. Rev. A 83, 033602 (2011).
  25. H. Takeuchi, N. Suzuki, K. Kasamatsu, H. Saito, and M. Tsubota, Phys. Rev. B 81, 094517 (2010).
  26. N. Suzuki, H. Takeuchi, K. Kasamatsu, M. Tsubota, and H. Saito, Phys. Rev. A 82, 063604 (2010).
  27. H. Kokubo, K. Kasamatsu, and H. Takeuchi, Phys. Rev. A 104, 023312 (2021).
  28. K. Sasaki, N. Suzuki, D. Akamatsu, and H. Saito, Phys. Rev. A 80, 063611 (2009).
  29. S. Gautam and D. Angom, Phys. Rev. A 81, 053616 (2010).
  30. T. Kadokura, T. Aioi, K. Sasaki, T. Kishimoto, and H. Saito, Phys. Rev. A 85, 013602 (2012).
  31. K. Sasaki, N. Suzuki, and H. Saito, Phys. Rev. A 83, 053606 (2011).
  32. D. Kobyakov, V. Bychkov, E. Lundh, A. Bezett, and M. Marklund, Phys. Rev. A 86, 023614 (2012).
  33. D. K. Maity, K. Mukherjee, S. I. Mistakidis, S. Das, P. G. Kevrekidis, S. Majumder, and P. Schmelcher, Phys. Rev. A 102, 033320 (2020).
  34. K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. Lett. 91, 150406 (2003).
  35. K. Kasamatsu and M. Tsubota, Phys. Rev. A 79, 023606 (2009).
  36. P. Mason and A. Aftalion, Phys. Rev. A 84, 033611 (2011).
  37. K. Kasamatsu, H. Takeuchi, M. Tsubota, and M. Nitta, Phys. Rev. A 88, 013620 (2013).
  38. В. П. Рубан, Письма в ЖЭТФ 113, 848 (2021).
  39. В. П. Рубан, ЖЭТФ 160, 912 (2021).
  40. K. J. H. Law, P. G. Kevrekidis, and L. S. Tuckerman, Phys. Rev. Lett. 105, 160405 (2010)
  41. Erratum, Phys. Rev. Lett. 106, 199903 (2011).
  42. M. Pola, J. Stockhofe, P. Schmelcher, and P. G. Kevrekidis, Phys. Rev. A 86, 053601 (2012).
  43. S. Hayashi, M. Tsubota, and H. Takeuchi, Phys. Rev. A 87, 063628 (2013).
  44. G. C. Katsimiga, P. G. Kevrekidis, B. Prinari, G. Biondini, and P. Schmelcher, Phys. Rev. A 97, 043623 (2018).
  45. A. Richaud, V. Penna, R. Mayol, and M. Guilleumas, Phys. Rev. A 101, 013630 (2020).
  46. A. Richaud, V. Penna, and A. L. Fetter, Phys. Rev. A 103, 023311 (2021).
  47. В. П. Рубан, Письма в ЖЭТФ 113, 539 (2021).
  48. В. П. Рубан, Письма в ЖЭТФ 115, 450 (2022).
  49. V. P.Ruban, W. Wang, C. Ticknor, and P. G. Kevrekidis, Phys. Rev. A 105, 013319 (2022).
  50. X. Liu, B. Zhou, H. Guo, and M. Bache, Opt. Lett. 40, 3798 (2015).
  51. X. Liu and M. Bache, Opt. Lett. 40, 4257 (2015).

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##