Monte Carlo Simulation of Energy Dissipation during the Cascade Decay of Inner-Shell Vacancies in an Iron Atom Placed in Water
- Authors: Chaynikov A.P.1, Kochur A.G.1, Dudenko A.I.1
-
Affiliations:
- Rostov State Transport University
- Issue: Vol 164, No 6 (2023)
- Pages: 927-941
- Section: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/247357
- DOI: https://doi.org/10.31857/S0044451023120076
- EDN: https://elibrary.ru/MWZHUI
- ID: 247357
Cite item
Abstract
We have performed the Monte Carlo simulation of the processes of secondary ionization of water induced by cascade decays of inner-shell vacancies in an iron atom placed in water. We have obtained the spectra of electrons and photons emitted during the decay of vacancies in the K and L shells of the iron atom. The dependences of the number of secondary ionization events and the energy absorbed as a result of these processes on the radius of the sphere in which such processes occur have been calculated. The decay of a single 1s vacancy in an iron atom generates on the average 232 events of secondary ionization induced by an electron impact, in which the energy of 3274 eV is absorbed, as well as 18 secondary photoionization events, in which the energy of 256 eV is absorbed. The dependences of the dose absorbed in water on the distance from the iron atom have been calculated.
About the authors
A. P. Chaynikov
Rostov State Transport University
Email: chaynikov.a.p@gmail.com
344038, Rostov-on-Don, Russia
A. G. Kochur
Rostov State Transport University
Email: chaynikov.a.p@gmail.com
344038, Rostov-on-Don, Russia
A. I. Dudenko
Rostov State Transport University
Author for correspondence.
Email: chaynikov.a.p@gmail.com
344038, Rostov-on-Don, Russia
References
- A. Ku, V. J. Facca, Z. Cai, and R.M. Reilly, EJNMMI Radiopharm. Chem. 4, 27 (2019); DOI: https://doi.org/10.1186/s41181-019-0075-2
- Y. Liu, P. Zhang, F. Li, X. Jin, J. Li, W. Chen, and Q. Li, Theranostics 8, 1824 (2018); DOI: https://doi.org/10.7150/thno.22172
- A. P. Chaynikov, A. G. Kochur, A. I. Dudenko, I. D. Petrov, and V. A. Yavna, Phys. Scr. 98, 025406 (2023); DOI: https://doi.org/10.1088/1402-4896/acb407
- А. П. Чайников, А. Г. Кочур, А. И. Дуденко, В. А. Явна, Опт. и спектр. 131, 563 (2023); DOI: https://doi.org/10.21883/OS.2023.04.55563.4560-22
- T. A. Carlson and M. O. Krause, Phys. Rev. 137, A1655 (1965); DOI: https://doi.org/10.1103/PhysRev.137.A1655
- M.O.Krause, M. L.Vestal, W.H. Johnston, and T.A. Carlson, Phys. Rev. 133, A385 (1964); DOI: https://doi.org/10.1103/PhysRev.133.A385
- M. O. Krause and T. A. Carlson, Phys. Rev. 149, 52 (1966); DOI: https://doi.org/10.1103/PhysRev.149.52
- T. Mukoyama, T. Tonuma, A. Yagishita, H. Shibata, T. Koizumi, T. Matsuo, K. Shima, and H. Tawara, J. Phys. B At. Mol. Phys. 20, 4453 (1987); DOI: https://doi.org/10.1088/0022-3700/20/17/023
- M. N. Mirakhmedov and E. S. Parilis, J. Phys. B At. Mol. Opt. Phys. 21, 795 (1988); DOI: https://doi.org/10.1088/0953-4075/21/5/010
- A. El-Shemi, Y. Lofty, and G. Zschornack, J. Phys. B At. Mol. Opt. Phys. 30, 237 (1997); DOI: https://doi.org/10.1088/0953-4075/30/2/017
- V. L. Jacobs, J. Davis, B. F. Rozsnyai, and J. W. Cooper, Phys. Rev. A 21, 1917 (1980); DOI: https://doi.org/10.1103/PhysRevA.21.1917
- A. G. Kochur, A. I. Dudenko, V. L. Sukhorukov, and I. D. Petrov, J. Phys. B At. Mol. Opt. Phys. 27, 1709 (1994); DOI: https://doi.org/10.1088/0953-4075/27/9/011
- A. G. Kochur, V. L. Sukhorukov, A. I. Dudenko, and P. V. Demekhin, J. Phys. B At. Mol. Opt. Phys. 28, 387 (1995); DOI: https://doi.org/10.1088/0953-4075/28/3/010
- G. Omar and Y. Hahn, Phys. Rev. A 44, 483 (1991); DOI: https://doi.org/10.1103/PhysRevA.44.483
- G. Omar and Y. Hahn, Z. Phys. D Atoms, Mol. Clust. 25, 31 (1992); DOI: https://doi.org/10.1007/BF01437517
- G. Omar and Y. Hahn, Z. Phys. D Atoms, Mol. Clust. 25, 41 (1992); DOI: https://doi.org/10.1007/BF01437518
- V. Jonauskas, R. Karazija, and S. Kuˇcas, J. Electron Spectros. Relat. Phenomena 107, 147 (2000); DOI:https://doi.org/10.1016/S0368-2048(00)00096-7
- V. Jonauskas, L. Partanen, S. Kuˇcas, R. Karazija, M. Huttula, S. Aksela, and H. Aksela, J. Phys. B At. Mol. Opt. Phys. 36, 4403 (2003); DOI: https://doi.org/10.1088/0953-4075/36/22/003
- A. G. Kochur, A. P. Chaynikov, A. I. Dudenko, and V. A. Yavna, J. Quant. Spectrosc. Radiat. Transf. 286, 108200 (2022); DOI: https://doi.org/10.1016/j.jqsrt.2022.108200
- A. G. Kochur, A. P. Chaynikov, and V. A. Yavna, Eur. Phys. J. D 73, 80 (2019); DOI: https://doi.org/10.1140/epjd/e2019-90185-2
- A. G. Kochur, A. P. Chaynikov, and V. A. Yavna, J. Electron Spectros. Relat. Phenomena 238, 146863 (2020); DOI: https://doi.org/10.1016/j.elspec.2019.05.012
- A. P. Chaynikov, A. G. Kochur, and V.A.Yavna, Radiat. Eff. Defects Solids 177, 814 (2022); DOI: https://doi.org/10.1080/10420150.2022.2082296
- A. G. Kochur, A. P. Chaynikov, and V. A. Yavna, Eur. Phys. J. D 71, 282 (2017); DOI: https://doi.org/10.1140/epjd/e2017-80194-6
- A. G. Kochur, A. P. Chaynikov, and V. A. Yavna, Appl. Radiat. Isot. 160, 109144 (2020); DOI: https://doi.org/10.1016/j.apradiso.2020.109144
- A. G. Kochur, A. P. Chaynikov, and V. A. Yavna, J. Electron Spectros. Relat. Phenomena 252, 147111 (2021); DOI: https://doi.org/10.1016/j.elspec.2021.147111
- A. G. Kochur, A. P. Chaynikov, and V. A. Yavna, J. Electron Spectros. Relat. Phenomena 256, 147171 (2022); DOI: https://doi.org/10.1016/j.elspec.2022.147171
- A. P. Chaynikov, A. G. Kochur, and V. A. Yavna, Radiat. Eff. Defects Solids 178, 820 (2023); DOI: https://doi.org/10.1080/10420150.2023.2185890
- V. G. Yarzhemsky and A. Sgamellotti, J. Electron Spectros. Relat. Phenomena 125, 13 (2002); DOI:https://doi.org/10.1016/S0368-2048(02)00042-7
- A. G. Kochur, A. I. Dudenko, I. D. Petrov, and V. F. Demekhin, J. Electron Spectros. Relat. Phenomena 156-158, 78 (2007); DOI: https://doi.org/10.1016/j.elspec.2006.11.033
- А. Г. Кочур, Процессы распада вакансий в глубоких электронных оболочках, Дисс. докт. физ.-мат. наук, Ростов-на-Дону (1997).
- R. Kau, I. D. Petrov, V. L. Sukhorukov, and H. Hotop, Z. Phys. D Atoms, Mol. Clust. 39, 267 (1997); DOI: https://doi.org/10.1007/s004600050137
- R. Karazija, Sums of Atomic Quantities and Mean Characteristics of Spectra, Mokslas, Vilnius (1991).
- S. Kuˇcas and R. Karazija, Phys. Scr. 47, 754 (1993); DOI: https://doi.org/10.1088/0031-8949/47/6/012
- A. P. Chaynikov, A. G. Kochur, A. I. Dudenko, and V. A. Yavna, J. Quant. Spectrosc. Radiat. Transf. 302, 108561 (2023); DOI: https://doi.org/10.1016/j.jqsrt.2023.108561
- А. Ф. Аккерман, Моделирование траекторий заряженных частиц в веществе, Энергоатомиздат, Москва (1991).
- J. H. Scofield, Theoretical Photoionization Cross Sections from 1 to 1500 keV, Lawrence Livermore National Laboratory (1973).
- M. B. Trzhaskovskaya and V. G. Yarzhemsky, At. Data Nucl. Data Tables 119, 99 (2018); DOI: https://doi.org/10.1016/j.adt.2017.04.003
- J. J. Yeh and I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985); DOI: https://doi.org/10.1016/0092-640X(85)90016-6
- M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen, NIST Standard Reference Database 8 (XGAM), NIST, PML, Radiation Physics Division (2010); DOI: https://dx.doi.org/10.18434/T48G6X
- И.И. Собельман, Введение в теорию атомных спектров, Наука, Москва (1977)
- I. I. Sobelman, Introduction to the Theory of Atomic Spectra, Elsevier (1972); DOI: https://doi.org/10.1016/C2013-0-02394-8
- A. Jablonski, F. Salvat, C. J. Powell, NIST Electron Elastic-Scattering Cross-Section Database - Version 3.2, National Institute of Standards and Technology, Gaithersburg, MD (2010); DOI: https://dx.doi.org/10.18434/T4NK50
- Y.-K. Kim and M. E. Rudd, Phys. Rev. A 50, 3954 (1994); DOI: https://doi.org/10.1103/PhysRevA.50.3954
- M. B. Shah, D. S. Elliott, and H. B. Gilbody, J. Phys. B At. Mol. Phys. 20, 3501 (1987); DOI: https://dx.doi.org/10.1088/0022-3700/20/14/022
- Y.-K. Kim and J.-P. Desclaux, Phys. Rev. A 66, 012708 (2002); DOI: https://doi.org/10.1103/PhysRevA.66.012708
- W. R. Thompson, M. B. Shah, and H. B. Gilbody, J. Phys. B At. Mol. Opt. Phys. 28, 1321 (1995); DOI: https://dx.doi.org/10.1088/0953-4075/28/7/023
- E. Brook, M. F. A. Harrison, and A. C. H. Smith, J. Phys. B At. Mol. Phys. 11, 3115 (1978); DOI: https://dx.doi.org/10.1088/0022-3700/11/17/021
- W. Hwang, Y.-K. Kim, and M. E. Rudd, J. Chem. Phys. 104, 2956 (1996); DOI: http://dx.doi.org/10.1063/1.471116
- M. A. Bolorizadeh and M. E. Rudd, Phys. Rev. A 33, 882 (1986); DOI: https://doi.org/10.1103/PhysRevA.33.882
- H. Shinotsuka, S. Tanuma, and C. Powell, Surf. Interface Anal. 54, 534 (2022); DOI: https://doi.org/10.1002/sia.7064
- N. Sinha and B. Antony, J. Phys. Chem. B 125, 5479 (2021); DOI: https://doi.org/10.1021/acs.jpcb.0c10781
- Z. Tan, Y. Xia, M. Zhao, and X. Liu, Radiat. Environ. Biophys. 45, 135 (2006); DOI: https://doi.org/10.1007/s00411-006-0049-0
- A. Akkerman and E. Akkerman, J. Appl. Phys. 86, 5809 (1999); DOI: https://doi.org/10.1063/1.371597
- Л. Д. Ландау, Е. М. Лифшиц, Курс теоретической физики. Том III. Квантовая механика (нерелятивистская теория), ФИЗМАТЛИТ, Москва (2004).
- Z. Francis, S. Incerti, M. Karamitros, H. N. Tran, and C. Villagrasa, Nucl. Instruments Methods Phys. Res. Sect. B 269, 2307 (2011); DOI: https://doi.org/10.1016/j.nimb.2011.02.031
- M. J. Berger, J. S. Coursey, M.A. Zucker, and J. Chang, NIST SRD 124: ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions (version 1.2.3), National Institute of Standards and Technology, Gaithersburg, MD (2005); DOI: https://dx.doi.org/10.18434/T4NC7P
- K. T. Butterworth, S. J. McMahon, F. J. Currell, and K. M. Prise, Nanoscale 4, 4830 (2012); DOI: https://doi.org/10.1039/C2NR31227A
Supplementary files
