Fonony, magnony i eksitony v netsentrosimmetrichnommagnitoelektrike - antiferromagnetike CuB2O4

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In the last two decades copper metaborate CuB2O4 with a unique noncentrosymmetric crystal structure has become the subject of active research due to its unusual magnetic and optical properties. We consider the propagation and absorption of light in CuB2O4 based on the solution of Maxwell’s equations. We present an overview of the main results on the investigation of the phonon spectrum using infrared and Raman spectroscopy. Studies in the region of electronic transitions in Cu2+ ions in the crystal field have allowed the separation of contributions to the optical absorption from copper ions in inequivalent positions. A splitting of zero-phonon absorption lines in a magnetic field has been detected, and these results have received a theoretical explanation in terms of the exciton model. A rich structure of exciton–magnon states has been observed in the photoluminescence spectra. We have carried out a spectroscopic study of the optical second harmonic generation in the region of excitonic transitions, which has allowed the contribution of the toroidal moment and the Fano resonance to the observed signals to be revealed.

作者简介

R. Pisarev

Ioffe Institute

Email: pisarev@mail.ioffe.ru
194021, St. Petersburg, Russia

R. Dubrovin

Ioffe Institute

编辑信件的主要联系方式.
Email: pisarev@mail.ioffe.ru
194021, St. Petersburg, Russia

参考

  1. Д. И. Менделеев, Основы химии, 8-е изд., С. Петербург (1906).
  2. M. Martinez-Ripoll, S. Martinez-Carrera, and S. Garcia-Blanco, Acta Cryst. B 27, 677 (1971).
  3. R. V. Pisarev, K. N. Boldyrev, M. N. Popova, A. N. Smirnov, V. Yu. Davydov, L. N. Bezmaternykh, M. B. Smirnov, and V. Yu. Kazimirov, Phys. Rev. B 88, 024301 (2013).
  4. K. N. Boldyrev, A. D. Molchanova, A. R. Nurmukhametov, M. V. Eremin, R. V. Pisarev, and M. N. Popova, Magnetochemistry 9, 95 (2023).
  5. G. K. Abdullaev and K. S. Mamedov, J. Struct. Chem. 22, 637 (1981).
  6. W. Depmeier, H. Schmid, and F. Haenssler, Naturwissenschaften, 67, 456 (1980).
  7. W. Depmeier and H. Schmid, Acta Cryst. B 38, 605 (1982).
  8. J. Schl¨uter, D. Pohl and U. Golla-Schindler, N. Jb. Miner., 185/1, 27 (2008).
  9. G. A. Petrakovskii, K. A. Sablina, L. V. Udod, A. I. Pankrats, D. A. Velikanova, R. Szymczak, M. Baran, G. V. Bondarenko, J. Magn. Magn. Mat., 300, e476-e478 (2006).
  10. N. D. Khanh, N. Abe, K. Kubo, M. Akaki, M. Tokunaga, T. Sasaki, and T. Arima, Phys. Rev. B 87, 184416 (2013).
  11. А. Д. Молчанова, Е. М. Мошкина, М. С. Молокеев, Е. В. Тропина, A. Ф. Бовина, К. Н. Болдырев, Оптика и спектроскопия 130, 111 (2022)
  12. A. D. Molchanova, E. M. Moshkina, M. S. Molokeev, E. V. Tropina, A. F. Bovina, K. N. Boldyrev, Optics and Spectroscopy 130, 105 (2022).
  13. A. D. Molchanova, K. N. Boldyrev, A. S. Erofeev, E. M. Moshkina, and L. N. Bezmaternykh, J. Phys.: Conf. Ser. 917, 072003 (2017).
  14. I. B. Bersuker, The Jahn-Teller effect, Cambridge University Press (2006).
  15. H. Behm, Acta Cryst. B B38, 2781 (1982).
  16. A. D. Molchanova, M. A. Prosnikov, R. M. Dubrovin, V. Yu. Davydov, A. N. Smirnov, R. V. Pisarev, K. N. Boldyrev, and M. N. Popova, Phys. Rev. B 96, 174305 (2017).
  17. Е. М. Мошкина, Н. А. Бельская, М. С. Молокеевa, А. Ф. Бовина, К. А. Шабанова, Д. Кох, Ю. В. Сереткин, Д. А. Великановa, Е. В. Еремин, А. С. Крылов, Л. Н. Безматерных, ЖЭТФ 163, 24 (2023)
  18. E. M. Moshkina, N. A. Belskaya, M. S. Molokeev, A. F. Bovina, K. A. Shabanova, D. Kokh, Yu. V. Seretkin, D. A. Velikanov, E. V. Eremin, A. S. Krylov and L. N. Bezmaternykh, J. Exp. Theor. Phys. 163, 17 (2023).
  19. M. Boehm, B. Roessli, J. Schefer, A. S. Wills, B. Ouladdiaf, E. Leli'evre-Berna, U. Staub, and G. A. Petrakovskii, Phys. Rev. B 68, 024405 (2003).
  20. А. Е. Петрова, А. И. Панкрац, ЖЭТФ, 153, 607 (2018)
  21. A. E. Petrova, A. I. Pankrats, J. Exp. Theor. Phys. 126, 506 (2018).
  22. T. Kawamata, N. Sugawara, S. M. Haider, and T. Adachi, et al, J. Phys. Soc. Jpn. 88, 114708 (2019).
  23. С. Н. Мартынов, Письма в ЖЭТФ 90, 60 (2009)
  24. S. N. Martynov, JETP Letters 90, 55 (2009).
  25. С. Н. Мартынов, ЖЭТФ 135, 82 (2009)
  26. S. N. Martynov, J. Exp. Theor. Phys., 108, 72 (2009).
  27. С. Н. Мартынов, ЖЭТФ 136, 1134 (2009)
  28. S. N. Martynov, J. Exp. Theor. Phys., 109, 979 (2009).
  29. G. N'enert, L. N. Bezmaternykh, A. N. Vasiliev, and T. T. M. Palstra, Phys. Rev. B 76, 144401 (2007).
  30. М. В. Еремин, А. Р. Нурмухаметов, Письма в ЖЭТФ, 114, 31 (2021)
  31. M. V. Eremin, A. R. Nurmukhametov, JETP Letters, 114, 35 (2021).
  32. А. Р. Нурмухаметов, М. В. Еремин, ЖЭТФ 162, 390 (2022)
  33. A. R. Nurmukhametov, M. V. Eremin, J. Exp. Theor. Phys. 135, 339 (2022).
  34. M. Saito, K. Ishikawa, K. Taniguchi, and T. Arima, Phys. Rev. Lett. 101, 117402 (2008).
  35. H. D. Flack, Acta Cryst. Sect. A 65, 371 (2009).
  36. International Tables for Crystallography, Volume A: Space Group Symmetry, Th. Hahn, Editor, Springer (2002).
  37. S. F. Mason, Molecular optical activity and the chiral discriminations, Cambridge University Press, New York (1982).
  38. S. W. Lovesey and U. Staub, J. Phys.: Condens. Matter 21, 142201 (2009).
  39. T. Arima and M. Saito J. Phys.: Condens. Matter 21, 498001 (2009).
  40. S. W. Lovesey and U. Staub J. Phys.: Condens. Matter 21, 498002 (2009).
  41. S. W. Lovesey, Phys. Rev. B 94, 094422 (2016).
  42. A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials, CRC Press, Taylor and Francis (1997).
  43. A. I. Nikitchenko and R. V. Pisarev, Phys. Rev. B 104, 184108 (2021).
  44. V. M. Agranovich and V. L. Ginsburg, Crystal optics with spatial dispersion and excitons, Wiley (1985).
  45. V. G. Ivanov, M. V. Abrashev, N. D. Todorov, V. Tomov, R. P. Nikolova, A. P. Litvinchuk, and M. N. Iliev, Phys. Rev. B 88, 094301 (2013).
  46. V. Tomov, P. M. Rafailov, and L. Yankova, J. Phys.: Conf. Ser. 682, 012028 (2016).
  47. A. S. Davydov, Theory of Molecular Excitons, Plenum, New York (1971).
  48. S. Sahoo, P. Malavi, and S. Karmakar, Phys. Rev. B 107, 094411 (2023).
  49. K. Imasaka, R. V. Pisarev, L. N. Bezmaternykh, T. Shimura, A. M. Kalashnikova, and T. Satoh, Phys. Rev. B 98, 054303 (2018).
  50. Yong-Xin Yan, Edward B. Gamble, Jr., and Keith A. Nelson, J. Chem. Phys. 83, 5391 (1985).
  51. Г. А. Смоленский, Р. В. Писарев, И. Г. Синий, Усп. физ. наук 116, 231 (1975)
  52. G. A. Smolenskii, R. V. Pisarev, and I. G. Sinii, Usp. Fiz. Nauk 18, 410 (1975).
  53. J. Ferr'e and G. A. Gehring, Rep. Prog. Phys. 47, 513 (1984).
  54. U. Fano, Phys. Rev. 124, 1866 (1961).
  55. R. V. Pisarev, I. S¨anger, G. A. Petrakovskii, and M. Fiebig, Phys. Rev. Lett. 93, 037204 (2004).
  56. R. V. Pisarev, A. M. Kalashnikova, O. Sch¨ops, and L. N. Bezmaternykh, Phys. Rev. B 84, 075160 (2011).
  57. R. G. Burns, Mineralogical Applications of Crystal Field Theory, Cambridge, 2nd Edition (1993).
  58. Olev Sild, Kristjan Haller (Eds.), Zero-Phonon Lines: And Spectral Hole Burning in Spectroscopy and Photochemistry, Springer-Verlag, Berlin, Heidelberg (2011).
  59. D. S. McClure, Electronic Spectra of Molecules and Ions in Crystals, Part II, Solid State Phys. 9, 399-525, F. Seitz, D. Turnbull (Eds.), Academic Press Inc., New York.
  60. R. D. Mero, C.-H. Lai, C.-H. Du, and H.-L. Liu, J. Phys. Chem. C 125, 4322 (2021).
  61. S. Toyoda, N. Abe, and T. Arima, Phys. Rev. B 93, 201109(R) (2016).
  62. S. Toyoda, N. Abe, and T. Arima, Phys. Rev. Lett. 123, 077401 (2019).
  63. R. L. Greene, D. D. Sell, W. M. Yen, A. L. Schawlow, R. M. White, Phys. Rev. Lett. 15, 656 (1965).
  64. J. W. Allen, R. M. Macfarlane, and R. L. White, Phys. Rev. 179, 523 (1969).
  65. R. Loudon, Adv. Phys. 17, 243 (1968).
  66. V. V. Eremenko, E. G. Petrov, Adv. Phys. 26, 31 (1977).
  67. Y. Tanabe and K. Aoyagi, Excitons in Magnetic Insulators, Ch.14 in Excitons, Ed. by E. I. Rashba and M. D. Sturge, North-Holland Publishing Company (1982).
  68. B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids, Oxford University Press, New York, (1989).
  69. N. E. Kopteva, D. Kudlacik, D. R. Yakovlev, M. V. Eremin, A. R. Nurmukhametov, M. Bayer, and R. V. Pisarev, Phys. Rev. B 105, 024421 (2022).
  70. K. N. Boldyrev, R. V. Pisarev, L. N. Bezmaternykh, and M. N. Popova, Phys. Rev. Lett. 114, 247210 (2015).
  71. В. В. Меньшенин, ЖЭТФ 151, 326 (2017)
  72. V. V. Menshenin, J. Exp. Theor. Phys. 124, 279 (2017).
  73. J. Frenkel, Phys. Rev. 37, 17 (1931)
  74. Phys. Rev. 37, 1276 (1931).
  75. T. Maiman, Nature 187, 493 (1960).
  76. G. F. Imbusch, R. Kopelman, Optical Spectroscopy of Electronic Centers in Solids, pages 1-37 in Laser Spectroscopy of Solids, W. M. Yen, P. M. Selzer (Eds.).
  77. G. F. Imbusch, Luminescence from solids with high concentrations of transition metal ions, in Luminescence of Inorganic Solids, edited by D. Bartolo, V. Goldberg, and D. Pacheco (Springer, Boston, 1978), pp. 155-180.
  78. R. E. Dietz, A. Misetich, Optical Spectroscopy of Electronic Centers in Solids, pages 366-385 in Laser Spectroscopy of Solids, W. M. Yen, P. M. Selzer (Eds.).
  79. D. Kudlacik, V. Yu. Ivanov, D. R. Yakovlev, V. F. Sapega, J. J. Schindler, J. Debus, M. Bayer, and R. V. Pisarev, Phys. Rev. 102, 035128 (2020).
  80. D. Kudlacik, Absorption und Photoluminesczenspectroskopie an CuB2O4, Masterarbeit, Technische Universit¨at Dortmund (2013).
  81. J. Mund, D. R. Yakovlev, A. N. Poddubny, R. M. Dubrovin, M. Bayer, and R. V. Pisarev, Phys. Rev. B 103, L180410 (2021).
  82. Y. R. Shen, The Principles of Nonlinear Optics, Wiley Classics Library (2003).
  83. R. W. Boyd, Nonlinear Optics, 3d edition, Academic Press (2020).
  84. M. Fiebig, D. Fr¨ohlich, Th. Lottermoser, V. V. Pavlov, R. V. Pisarev, and H.-J. Weber, Phys. Rev. Lett. 87, 137202 (2001).
  85. M. Fiebig, Th. Lottermoser, V. V. Pavlov and R. V. Pisarev, J. Appl. Phys. 93, 6900 (2003).
  86. M. Fiebig, D. Fr¨ohlich, Th. Lottermoser, V. V. Pavlov, R. V. Pisarev, and H.-J. Weber, J. Magn. Magn. Mat. 258-259, 110 (2003).
  87. M. Fiebig, R. V. Pisarev, J. Magn. Magn. Mat. 272-276, e1607 (2004).
  88. M. Fiebig, V. V. Pavlov, and R. V. Pisarev, J. Opt. Soc. Am. 22, 96 (2005).
  89. S. Toyoda, M. Fiebig, T.-H. Arima, Y. Tokura, and N. Ogawa, Sci. Adv. 7, sciadv.abe2793 (2021).
  90. V. M. Dubovik, V. V. Tugushev, Physics Reports 187, 145 (1990).
  91. S. Nanz, Toroidal Multipole Moments in Classical Electrodynamics, Springer Spektrum, Wiesbaden (2016).

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##