Vliyanie shuma na rezistivnoe pereklyuchenie memristora na osnove stabilizirovannogo dioksida tsirkoniya

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The effect of Gaussian noise on the switching of a ZrO2(Y) based memristor from the low resistance state (LRS) into the high resistance state (HRS) including transitions from the LRS into intermediate metastable states has been studied. The series of positive (with addition of the noise signal or without the one) and negative rectangular voltage pulses were used as the switching signals. The adding of noise to the switching signal initiated the switching of the memristor from the LRS into the HRS at smaller pulse magnitudes than in the case of switching by the rectangular pulses without adding the noise. A necessary (preset) HRS can be achieved passing the intermediate states by adding the noise with certain parameters to the rectangular switching pulses. The resistive switching is performed without application of adaptive switching protocols. The results of the present study can be applied in the development of innovative memristor switching protocols.

作者简介

O. Gorshkov

Lobachevsky University of Nizhny Novgorod

Email: gorshkov@nifti.unn.ru
603022, Nizhny Novgorod, Russia

D. Filatov

Lobachevsky University of Nizhny Novgorod

Email: gorshkov@nifti.unn.ru
603022, Nizhny Novgorod, Russia

M. Koryazhkina

Lobachevsky University of Nizhny Novgorod

Email: gorshkov@nifti.unn.ru
603022, Nizhny Novgorod, Russia

V. Lobanova

Lobachevsky University of Nizhny Novgorod

Email: gorshkov@nifti.unn.ru
603022, Nizhny Novgorod, Russia

M. Ryabova

Lobachevsky University of Nizhny Novgorod

编辑信件的主要联系方式.
Email: gorshkov@nifti.unn.ru
603022, Nizhny Novgorod, Russia

参考

  1. S. H. Lee, X. Zhu, and W. D. Lu, Nano Res. 13, 1228 (2020).
  2. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nat. Mater. 80, 453 (2008).
  3. D. Ielmini, Semicond. Sci. Technol. 31, 063002 (2016).
  4. J. S. Lee, S. Lee, and T. W. Noh, Appl. Phys. Rev. 2, 031303 (2015).
  5. I. Riess, J. Electroceram. 39, 61 (2017).
  6. A. Sawa, Mater. Today 11, 28 (2008).
  7. Z. Wang, H. Wu, G. W. Burr et al., Nat. Rev. Mater. 5, 173 (2020).
  8. A. Stotland and M. di Ventra, Phys. Rev. E 85, 011116 (2012).
  9. H. A. Kramers, Physica (Utrecht) 7, 284 (1940).
  10. D. O. Filatov, D. V. Vrzheshch, O. V. Tabakov et al., J. Stat. Mech. Theory Exp. 124026 (2019).
  11. A. N. Mikhaylov, D. V. Guseinov, A. I. Belov et al., Chaos, Solitons & Fractals 144, 110723 (2021).
  12. M. A. Ryabova, D. O. Filatov, M. N. Koriazhkina et al., J. Phys.: Conf. Ser. 1851, 012003 (2021).
  13. N. V. Agudov, A. A. Dubkov, A. V. Safonov et al., Chaos, Solutions and Fractals 150, 111131(2021).
  14. D. O. Filatov, M. N. Koryazhkina, A. S. Novikov et al., Chaos, Solitons, & Fractals 156, 111810 (2022).
  15. M. N. Koryazhkina, D. O. Filatov, V. A. Shishmakova et al., Chaos, Solutions & Fractals 162, 112459 (2022).
  16. G. A. Patterson, P. I. Fierens, and D. F. Grosz, Appl. Phys. Lett. 103, 074102 (2013).
  17. V. Ntinas, A.Rubio, G. Ch. Sirakoulis et al., IEEE Trans. Circuits and Systems II 68, 1378 (2021).
  18. S. Menzel, U. Bottger, M. Wimmer, and M. Salinga, Adv. Func. Mater. 25, 6306 (2015).

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##