Strukturnyy besporyadok, teploemkost' i magnitnye perekhody v cu2febo5

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Cu2FeBO5 ludwigite single crystals have been grown from a solution–melt by spontaneous crystallization. Using the X-ray diffraction method, the crystal structure has been resolved in detail. Cations in sites M2, M3, and M4 have turned out to be structurally disordered. It has been found that oxygen atoms are disordered in one of five nonequivalent sites (O4). As can be seen from Mössbauer spectroscopy data, Fe3+ ions occupy four nonequivalent sites with different distortions of coordination octahedra. In the temperature range 40 K ≤ T ≤ 300 K, the spectra represent a superposition of quadrupole doublets. Static susceptibility measurements have revealed two magnetic features at T1 = 35 K and T2 = 20 K and spin-glass effects. Specific heat measurements in the interval 4–300 K have not discovered magnetic-transition-related anomalies.

Sobre autores

Yu. Gokhfel'd

Kirensky Institute of Physics, Federal Research Center Krasnoyarsk Science Center (KSC), Siberian Branch, Russian Academy of Sciences

Email: yugo@iph.krasn.ru
660036, Krasnoyarsk, Russia

N. Kazak

Kirensky Institute of Physics, Federal Research Center Krasnoyarsk Science Center (KSC), Siberian Branch, Russian Academy of Sciences

Email: nat@iph.krasn.ru
660036, Krasnoyarsk, Russia

N. Bel'skaya

Ioffe Institute

Email: yugo@iph.krasn.ru
194021, St. Petersburg, Russia

M. Molokeev

Kirensky Institute of Physics, Federal Research Center Krasnoyarsk Science Center (KSC), Siberian Branch, Russian Academy of Sciences; Siberian Federal University

Email: yugo@iph.krasn.ru
660036, Krasnoyarsk, Russia; 660041, Krasnoyarsk, Russia

I. Gudim

Kirensky Institute of Physics, Federal Research Center Krasnoyarsk Science Center (KSC), Siberian Branch, Russian Academy of Sciences

Email: yugo@iph.krasn.ru
660036, Krasnoyarsk, Russia

O. Kondrat'ev

National Research Center Kurchatov Institute

Email: yugo@iph.krasn.ru
123182, Moscow, Russia

E. Eremin

Kirensky Institute of Physics, Federal Research Center Krasnoyarsk Science Center (KSC), Siberian Branch, Russian Academy of Sciences; Siberian Federal University

Email: yugo@iph.krasn.ru
660036, Krasnoyarsk, Russia; 660041, Krasnoyarsk, Russia

Yu. Knyazev

Kirensky Institute of Physics, Federal Research Center Krasnoyarsk Science Center (KSC), Siberian Branch, Russian Academy of Sciences

Email: yugo@iph.krasn.ru
660036, Krasnoyarsk, Russia

D. Velikanov

Kirensky Institute of Physics, Federal Research Center Krasnoyarsk Science Center (KSC), Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: yugo@iph.krasn.ru
660036, Krasnoyarsk, Russia

Bibliografia

  1. А. И. Смирнов, Л. Е. Свистов, Л. А. Прозорова и др., УФН 180, 880 (2010).
  2. Л. Е. Свистов, Л. А. Прозорова, Н. Бюттген и др., Письма в ЖЭТФ 81, 133 (2005).
  3. А. И. Панкрац, Г. А. Петраковский, М. А. Попов и др., Письма в ЖЭТФ 78, 1058 (2003).
  4. J. Schaefer and K. Bluhm, Z. Anorg. Allg. Chem. 621, 571 (1995).
  5. R. M. Eremina, T. P. Gavrilova, E. M. Moshkina et al., J. Magn. Magn. Mater. 515, 167262 (2020).
  6. E. Moshkina, C. Ritter, E. Eremin et al., J. Phys.: Condens. Matter 29, 245801 (2017).
  7. K. Bluhm and H. K. Muller-Buschbaum, Z. Anorg. Allg. Chem. 582, 15 (1990).
  8. J. Kumar, S. N. Panja, D. J. Mukkattukavil et al., Phys. Rev. B 95, 144409 (2017).
  9. Н. Б. Иванова, М. С. Платунов, Ю. В. Князев и др., ФТТ 54, 2080 (2012).
  10. F. Damay, J. Sottmann, F. Fauth et al., Appl. Phys. Lett. 118, 192903 (2021).
  11. A. A. Kulbakov, R. Sarkar, O. Janson et al., Phys. Rev. B 103, 024447 (2021).
  12. M. A. Continentino, J. C. Fernandes, R. B. Guim˜araes et al., Eur. Phys. J. B 9, 613 (1999).
  13. Г. А. Петраковский, Л. Н. Безматерных, Д. А. Великанов и др., ФТТ 51, 1958 (2009).
  14. G. M. Sheldrick, Acta Cryst. A 64, 112 (2008).
  15. PLATON - A Multipurpose Crystallographic Tool. Utrecht University, Utrecht, The Netherlands (2008).
  16. M. H. Cohen and F. Reif, Sol. St. Phys. 5, 321 (1957).
  17. I. D. Brown and D. Altermatt, Acta Cryst. B 41, 244 (1985).
  18. D. A. Velikanov, Inorg. Mater. Appl. Res. 11, 801 (2020).
  19. Д. А. Великанов, Патент RU2481591 (C1), опубликовано 10.05.2013, Бюлл. изобрет. № 13, https://www.fips.ru/Archive/PAT/2013FULL/2013.05.10/DOC/RUNWC1/000/000/002/481/591/DOCUMENT.PDF
  20. J. C. Fernandes, R. B. Guimara˜es, M. A. Continentino et al, Phys. Rev. B 58, 287 (1998).
  21. Y. V. Knyazev, N. V. Kazak, V. S. Zhandun et al., Dalton Trans. 50, 9735 (2021).
  22. A. P. Douvalis, A. Moukarika, T. Bakas et al., J. Phys.: Condens. Matter 14, 3303 (2002).
  23. G. A. Bain and J. F. J. Berry, Chem. Educ. 85, 532 (2008).
  24. M. G. Banks, R. K. Kremer, C. Hoch et al., Phys. Rev. B 80, 024404 (2009).
  25. N. V. Kazak, N. A. Belskaya, E. M. Moshkina et al., J. Magn. Magn. Mater. 534, 168056 (2021).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies