Antiferromagnitnyy eksitonnyy dielektrik

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The effective the two-band Hamiltonian is obtained for iridium oxides with account for strong electron correlations (SEC) and the spin–orbit interaction. The intraatomic electron correlations in iridium ions induce the formation of Hubbard fermions (HF) filling the states in the valence band. Another consequence of SEC is associated with the emergence of the antiferromagnetic (AFM) exchange interaction between HF in accordance with the Anderson mechanism. As a result, a long-range antiferromagnetic order is established in the system, and in the conditions of band overlapping, the intersite Coulomb interaction induces a phase transition to the excitonic insulator (EI) state with a long-range AFM order. The system of integral self-consistent equations, the solution to which determines the excitonic order parameter components Δi, j(k), sublattice magnetization M, Hubbard fermion concentration nd, and chemical potential μ, is obtained using the atomic representation, the method of two-time temperature Green’s functions, and the Zwanzig–Mori projection technique. The symmetry classification of AFM EI phases is performed, and it is shown that in the nearest neighbor approximation, state Δi, j(k) with the s-type symmetry corresponds to the ground state, while the phases with the d- and p-symmetries are metastable.

作者简介

V. Val'kov

Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: vvv@iph.krasn.ru
660036, Krasnoyarsk, Russia

参考

  1. А. С. Боровик-Романов, Антиферромагнетизм, в книге Антиферромагнетизм и ферриты, изд-во АН СССР (1962), стр. 5.
  2. A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, 11919 (1994).
  3. D. H. Lee, J. D. Joannopoulos, J. W. Negele et al, Phys. Rev. Lett. 433A, 52 (1984).
  4. H. Kawamura, S. Miyashita, J. W. Negele et al, Phys. Rev. Lett. 54, 453952 (1985).
  5. A. V. Chubukov and D. I. Golosov, J. Phys.: Condens. Mat. 3, 69 (1991).
  6. А. И. Смирнов, УФН 186, 633 (2016).
  7. Л. Е. Свистов, А. И. Смирнов, Л. А. Прозорова и др., Письма в ЖЭТФ 80, 231 (2004).
  8. Л. Е. Свистов, Л. А. Прозорова, А. М. Фарутин и др., ЖЭТФ 135, 1151 (2009).
  9. Л. В. Келдыш, Ю. В. Копаев, ФТТ 6, 2791 (1964).
  10. А. Н. Козлов, Л. А. Максимов, ЖЭТФ 48, 1184 (1965).
  11. J. de Cloiseaux, J. Phys. Chem. Solids 26, 259 (1965).
  12. Y. Lu, H. Kono, T. Larkin, A. Rost, T. Takayama, A. Boris, B. Keimer, and H. Takagi, Nat.Commun. 8, 14408 (2017).
  13. Н. И. Куликов, В. В. Тугушев, УФН 144, 643 (1984).
  14. D. G. Mazzone, Y. Shen, H. Suwn et al, Nature Commun. 26, 259 (2022).
  15. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
  16. X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
  17. L. Balents, Nature (London) 464, 199 (2010).
  18. В. В. Вальков, Письма в ЖЭТФ 111, 772 (2020).
  19. B. J. Kim, Hosub Jin, S. J. Moon et al, Phys. Rev. Lett. 101, 076402 (2008).
  20. J.-M. Carter, V. Vijay Shankar, and Hae-Young Kee, Phys. Rev. B 86, 035111 (2013).
  21. R. Scha er, Eric Kin-Ho Lee, Bohm-Jung Yang et al, Rep. Prog. Phys. 79, 094594 (2016).
  22. S. Bhowal and I. Dasgupta, J. Phys.: Condens. Matter, 33, 453001 (2021).
  23. V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987).
  24. J. Hubbard, Proc. Roy. Soc. A 283, 242 (1963).
  25. Ю.А. Изюмов, УФН 161, 1 (1991).
  26. Ю.А. Изюмов, УФН 165, 403 (1995).
  27. Ю.А. Изюмов, УФН 167, 465 (1997).
  28. Н.Н. Боголюбов, Изв. АН СССР, Сер. физ. VI, №1, 77 (1947).
  29. Д. Н. Зубарев, Неравновесная статистическая термодинамика, Наука, Москва (1971).
  30. С. В. Тябликов, Методы квантовой теории магнетизма, Наука, Москва (1965)
  31. J. Hubbard, Proc. Roy. Soc. A 285, 542 (1965).
  32. F. Dyson, Phys. Rev. 102, 1217, 1230 (1956).
  33. Р.О. Зайцев, ЖЭТФ 68, 207 (1975).
  34. Р.О. Зайцев, ЖЭТФ 70, 1100 (1976).
  35. R. Zwanzig, Phys. Rev. 124, 983 (1961).
  36. H. Mori, Prog. Theor. Phys. 33, 423 (1965).
  37. M. M. Otrokov, I. I. Klimovskikh, H. Bentmann et al., Nature 576, 416 (2019); arXiv:1809.07389 (2018).
  38. D. Zhang, M. Shi, T. Zhu et al., Phys. Rev. Lett. 122, 206401 (2019).
  39. Y. Gong, J. Guo, J. Li et al., Chin. Phys. Lett. 36, 076801 (2019).

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##