Magnitostaticheskiy mekhanizm narusheniya kiral'noy simmetrii v mnogosloynykh magnitnykh strukturakh

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It is shown that the energy of a ferromagnetic film deposited onto a paramagnetic or superconducting substrate acquires a contribution in the form of the Dzyaloshinskii–Moriya interaction. This contribution appears as a result of the magnetostatic interaction of the magnetization of the ferromagnetic film with the magnetization induced by it in a paramagnet or by the supercurrent in the superconductor and leads to the removal of the chiral degeneracy, nonreciprocity of spin waves, and the formation of chiral states such as magnetic skyrmions. Our estimates indicate the possibility of experimental observation of predicted effects.

作者简介

M. Kuznetsov

Institute for Physics of Microstructures, Russian Academy of Sciences

Email: kuznetsovm@ipmras.ru
603950, Nizhny Novgorod, Russia

A. Fraerman

Institute for Physics of Microstructures, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: andr@ipmras.ru
603950, Nizhny Novgorod, Russia

参考

  1. I. E. Dzialoshinskii, Sov. Phys. JETP 5, 1259 (1957).
  2. T. Moriya, Phys. Rev. 120, 91 (1960).
  3. S. Mu¨hlbauer, B. Binz, F. Jonietz et al., Science 323, 915 (2009).
  4. N. Romming, C. Hanneken, M. Menzel et al., Science 341, 636 (2013).
  5. J.-H. Moon, S.-M. Seo, K.-J. Lee et al., Phys. Rev. B 88, 184404 (2013).
  6. K. Di, V. L. Zhang, H. S. Lim et al., Appl. Phys. Lett. 106, 052403 (2015).
  7. Y. Ishikawa, K. Tajima, D. Bloch et al., Sol. St.Commun. 19, 525 (1976).
  8. A. Cr'epieux and C. Lacroix, J. Magn. Magn. Mater. 182, 341 (1998).
  9. H. Yang, A. Thiaville, S. Rohart et al., Phys. Rev. Lett. 115, 267210 (2015).
  10. H. Imamura, P. Bruno, and Y. Utsumi, Phys. Rev. B 69, 121303 (2004).
  11. S.-X. Wang, H.-R. Chang, and J. Zhou, Phys. Rev. B 96, 115204 (2017).
  12. N. Mikuszeit, S. Meckler, R. Wiesendanger et al., Phys. Rev. B 84, 054404 (2011).
  13. K. Р. Мухаматчин, А. А. Фраерман, Письма в ЖЭТФ 93, 797 (2011).
  14. И. М. Нефедов, А. А. Фраерман, И. А. Шерешевский, ФТТ 58, 490 (2016).
  15. K. Р. Мухаматчин, А. А. Фраерман, ЖЭТФ 158, 1109 (2020).
  16. M. A. Kuznetsov and A. A. Fraerman, Phys. Rev. B 105, 214401 (2022).
  17. M. A. Kuznetsov, K. R. Mukhamatchin, and A. A. Fraerman, Phys. Rev. B 107, 184428 (2023).
  18. R. E. Camley, Surf. Sci. Rep. 7, 103 (1987).
  19. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves, CRC, New York (1996).
  20. M. Jamali, J. H. Kwon, S.-M. Seo et al., Sci. Rep. 3, 3160 (2013).
  21. N. Sato, K. Sekiguchi, and Y. Nozaki, Appl. Phys. Express 6, 063001 (2013).
  22. Y. Li, W. Zhang, V. Tyberkevych et al., J. Appl. Phys. 128, 130902 (2020).
  23. A. Barman, G. Gubbiotti, S. Ladak et al., J. Phys.: Condens. Matter 33, 413001 (2021).
  24. H. Yu, J. Xiao, and H. Schultheiss, Phys. Rep. 905, 1 (2021).
  25. R. W. Damon and J. R. Eshbach, J. Phys. Chem. Sol. 19, 308 (1961).
  26. S. R. Seshadri, Proc. IEEE 58, 506 (1970).
  27. R. E. De Wames and T. Wolfram, J. Appl. Phys. 41, 5243 (1970).
  28. M. Mruczkiewicz and M. Krawczyk, J. Appl. Phys. 115, 113909 (2014).
  29. R. L. Melcher, Phys. Rev. Lett. 30, 125 (1973).
  30. L. Udvardi and L. Szunyogh, Phys. Rev. Lett. 102, 207204 (2009).
  31. K. Zakeri, Y. Zhang, J. Prokop et al., Phys. Rev. Lett. 104, 137203 (2010).
  32. J.-H. Moon, S.-M. Seo, K.-J. Lee et al., Phys. Rev. B 88, 184404 (2013).
  33. F. Garcia-Sanchez, P. Borys, J.-V. Kim et al., Phys. Rev. B 89, 224408 (2014).
  34. A. A. Stashkevich, M. Belmeguenai, Y. Roussign'e et al., Phys. Rev. B 91, 214409 (2015).
  35. M. Belmeguenai, J.-P. Adam, Y. Roussign'e et al., Phys. Rev. B 91, 180405(R) (2015).
  36. V. L. Zhang, K. Di, H. S. Lim et al., Appl. Phys. Lett. 107, 022402 (2015).
  37. J. M. Lee, C. Jang, B.-C. Min et al., Nano Lett. 16, 62 (2016).
  38. T. Br¨acher, O. Boulle, and G. Gaudin, Phys. Rev. B 95, 064429 (2017).
  39. K. Szulc, P. Graczyk, M. Mruczkiewicz et al., Phys. Rev. Appl. 14, 034063 (2020).
  40. F. J. dos Santos, M. dos Santos Dias, and S. Lounis, Phys. Rev. B 102, 104401 (2020).
  41. H. Wang, J. Chen, T. Liu et al., Phys. Rev. Lett. 124, 027203 (2020).
  42. A. F. Franco and P. Landeros, Phys. Rev. B 102, 184424 (2020).
  43. I. A. Golovchanskiy, N. N. Abramov, V. S. Stolyarov et al., J. Appl. Phys. 124, 233903 (2018).
  44. I. A. Golovchanskiy, N. N. Abramov, and V. S. Stolyarov, J. Appl. Phys. 127, 093903 (2020).
  45. R. E. Camley and A. A. Maradudin, Sol. St.Commun. 41, 585 (1982).
  46. P. X. Zhang and W. Zinn, Phys. Rev. B 35, 5219 (1987).
  47. J. Barna's and P. Gru¨nberg, J. Magn. Magn. Mater. 82, 186 (1989).
  48. F. C. N¨ortemann, R. L. Stamps, and R. E. Camley, Phys. Rev. B 47, 11910 (1993).
  49. A. V. Vashkovskii and E. G. Lokk, J.Commun. Technol. Electron. 51, 568 (2006).
  50. R. A. Gallardo, T. Schneider, A. K. Chaurasiya et al., Phys. Rev. Appl. 12, 034012 (2019).
  51. M. Ishibashi, Y. Shiota, T. Li et al., Sci. Adv. 6, eaaz6931 (2020).
  52. W. Song, X. Wang, W. Wang et al., Phys. Stat. Sol. RRL 14, 2000118 (2020).
  53. M. Grassi, M. Geilen, D. Louis et al., Phys. Rev. Appl. 14, 024047 (2020).
  54. J. Han, Y. Fan, B. C. McGoldrick et al., Nano Lett. 21, 7037 (2021).
  55. S. Rohart and A. Thiaville, Phys. Rev. B 88, 184422 (2013).
  56. A. N. Bogdanov and D. A. Yablonskii, Sov. Phys. JETP 68, 101 (1989).
  57. A. Bogdanov and A. Hubert, Phys. Stat. Sol. B 186, 527 (1994).
  58. A. Bogdanov and A. Hubert, J. Magn. Magn. Mater. 138, 255 (1994).
  59. S. Y. Dan'kov, A. M. Tishin, V. K. Pecharsky et al., Phys. Rev. B 57, 3478 (1998).
  60. M. Ba'cani, M. A. Marioni, J. Schwenk et al., Sci. Rep. 9, 3114 (2019).
  61. A. Samardak, A. Kolesnikov, and M. Stebliy, Appl. Phys. Lett. 112, 192406 (2018).
  62. A. G. Temiryazev, M. P. Temiryazeva, A. V. Zdoroveyshchev et al., Phys. Sol. St. 60, 2200 (2018).
  63. L.-C. Peng, Y. Zhang, S.-L. Zuo et al., Chin. Phys. B 27, 066802 (2018).

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##