Otklik zaryadovoy podsistemy na fazovye perekhody v dvoynykh manganitakh LnBaMn2O6

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the structural, magnetic, and optical properties of double manganites LnBaMn2O6 with Ln = Pr, Nd, Sm, Nd1 – xSmx (x = 0.25, 0.5, 0.75). Analysis of the temperature dependences of transmission in the near IR range has shown the difference in the responses of the charge subsystem for different types of charge/orbital ordering in the system. In PrBaMn2O6 manganite, the orbital ordering of the dx2−y2 type leads to an insulator state at low temperatures. The charge subsystem of manganites NdBaMn2O6, Nd0.75Sm0.25BaMn2O6, and Nd0.5Sm0.5BaMn2O6 is sensitive to the orbital ordering type: in the temperature interval TCO2 < T < TCO1, where pairwise alignment of layers with d3x2−r2/d3y2−r2 ordered orbitals is realized, the semiconductor character of charge carriers is observed, while upon a transition to the layer-by-layer alignment of orbitally ordered layers for T < TCO2, charge carriers are of the metal character. In manganites Nd0.25Sm0.75BaMn2O6 and SmBaMn2O6, the absence of clearly manifested metal nature of the charge subsystem at T < TCO2 is associated with the formation of the antiferromagnetic ordering of the CE type.

Sobre autores

E. Mostovshchikova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: mostovsikova@imp.uran.ru
620108, Yekaterinburg, Russia

E. Sterkhov

Pyzhyanov Institute of Metallurgy, Ural Branch, Russian Academy of Sciences

Email: mostovsikova@imp.uran.ru
620016, Yekaterinburg, Russia

Ya. Pyzh'yanov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: mostovsikova@imp.uran.ru
620108, Yekaterinburg, Russia

S. Titova

Pyzhyanov Institute of Metallurgy, Ural Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: mostovsikova@imp.uran.ru
620016, Yekaterinburg, Russia

Bibliografia

  1. S. V. Trukhanov, I. O. Troyanchuk, M. Hervieu et al. Phys. Rev. B 66, 184424 (2002).
  2. T. Nakajima, H. Kageyama, H. Yoshizawa et al., J. Phys. Soc. Japan 71, 2843 (2002).
  3. D. Akahoshi, M. Uchida, Y. Tomioka et al., Phys. Rev. Lett. 90, 177203 (2003).
  4. T. Nakajima, H. Yoshizawa, and Y. Ueda, J. Phys. Soc. Japan 73, 2283 (2004).
  5. D. Akahoshi, Y. Okimoto, M. Kubota et al., Phys. Rev. B 70, 064418 (2004).
  6. E. V. Mostovshchikova, E. V. Sterkhov, S. V. Naumov et al., J. Magn. Magn. Mater. 538, 168247 (2021).
  7. E. V. Sterkhov, N. M. Chtchelkatchev, E. V. Mostovshchikova et al., J. Alloys Comp. 892, 162034 (2021).
  8. S. G. Titova, E. V. Sterkhov, and S. A. Uporov, J. Supercond. Novel Magn. 33, 1899 (2020).
  9. T. Nakajima, H. Kageyama, and Y. Ueda, J. Magn. Magn. Mater. 272-276, 405 (2004).
  10. N. Tanikawa, H. Takada, M. Hori et al., J. Phys. Soc. Japan 88, 104706 (2019).
  11. S. Yamada, H. Sagayama, K. Higuchi et al., Phys. Rev. B 95, 035101 (2017).
  12. T. Nakajima, H. Kageyama, H. Yoshizawa et al., J. Phys. Soc. Japan 72, 3237 (2003).
  13. T. Arima, D. Akahoshi, K. Oikawa et al., Phys. Rev. B 66, 140408(R) (2002).
  14. H. Sagayama, S. Toyoda, K. Sugimoto et al., Phys. Rev. B 90, 241113(R) (2014).
  15. S. Yamada, Y. Maeda, and T. Arima, J. Phys. Soc. Japan 81, 113711 (2012).
  16. N. N. Loshkareva, Yu. P. Sukhorukov, E. V. Mostovshchikova et al., JETP 94, 350 (2002).
  17. S. V. Streltsov, R. E. Ryltsev, and N. M. Chtchelkatchev, J. Alloys Comp. 912, 165150 (2022).
  18. S. V. Trukhanov, L. S. Lobanovski, M. V. Bushinsky et al., J. Phys.: Condens. Matter 17, 6495 (2005).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies