Okhlazhdenie struy dlya tyazhelykh fleyvorov v AA- i pp-stolknoveniyakh

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We perform a global analysis of experimental data on jet quenching for heavy flavors for scenarios with and without quark-gluon plasma formation in pp collisions. We find that the theoretical predictions for the nuclear modification factor RAA for heavy flavors at the LHC energies are very similar for these scenarios, and the results for RAA and v2 agree reasonably with the LHC data. The agreement with data at the RHIC top energy becomes somewhat better for the intermediate scenario, in which the quark-gluon plasma formation in pp collisions occurs only at the LHC energies. Our fits to heavy flavor RAA show that description of jet quenching for heavy flavors requires somewhat bigger αs than data on jet quenching for light hadrons.

Sobre autores

B. Zakharov

Landau Institute for Theoretical Physics

Autor responsável pela correspondência
Email: bgz@itp.ac.ru
117940, Moscow, Russia

Bibliografia

  1. R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peign'e, and D. Schiff, Nucl. Phys. B483, 291 (1997) [arXiv:hep-ph/9607355].
  2. B.G. Zakharov, JETP Lett. 63, 952 (1996) [arXiv:hep-ph/9607440].
  3. U.A. Wiedemann, Nucl. Phys. A690, 731 (2001 [arXiv:hep-ph/0008241].
  4. M. Gyulassy, P. L'evai, and I. Vitev, Nucl. Phys. B594, 371 (2001) [arXiv:hep-ph/0006010].
  5. P. Arnold, G.D. Moore, and L.G. Yaffe, JHEP 0206, 030 (2002) [arXiv:hep-ph/0204343].
  6. R. Baier, D. Schiff, and B.G. Zakharov, Ann. Rev. Nucl. Part. Sci. 50, 37 (2000) [arXiv:hep-ph/0002198].
  7. J.D. Bjorken, Fermilab preprint 82/59-THY (1982, unpublished).
  8. B.G. Zakharov, JETP Lett. 86, 444 (2007) [arXiv:0708.0816].
  9. W. Broniowski and W. Florkowski, Phys. Rev. C65, 024905 (2002) [arXiv:nucl-th/0110020].
  10. V. Khachatryan et al. [CMS Collaboration], JHEP 1009, 091 (2010) [arXiv:1009.4122].
  11. G. Aad et al. [ATLAS Collaboration], Phys. Rev. Lett. 116, 172301 (2016) [arXiv:1509.04776].
  12. J. Adam et al. [ALICE Collaboration], Nature Phys. 13, 535 (2017) [arXiv:1606.07424].
  13. R. Campanini, G. Ferri, and G. Ferri, Phys. Lett. B703, 237 (2011), [arXiv:1106.2008].
  14. L. Van Hove, Phys. Lett. B118, 138 (1982).
  15. R. Field, Acta Phys. Polon. B42, 2631 (2011) [arXiv:1110.5530].
  16. B.G. Zakharov, Phys. Rev. Lett. 112, 032301 (2014) [arXiv:1307.3674].
  17. S. Tripathy [for ALICE Collaboration], arXiv:2103.07218.
  18. B.G. Zakharov, JETP Lett. 116, 347 (2022) [arXiv:2208.10339].
  19. B.G. Zakharov, JHEP 09, 087 (2021) [arXiv:2105.09350].
  20. A. Bazavov et al., Phys. Rev. D98, 054511 (2018) [arXiv:1804.10600].
  21. J. Braun and H. Gies, Phys. Lett. B645, 53 (2007) [arXiv:hep-ph/0512085].
  22. L. Apolin'ario, Y.-J. Lee, and M. Winn, Prog. Part. Nucl. Phys. 127, 103990 (2022) [arXiv:2203.16352].
  23. Y.L. Dokshitzer and D.E. Kharzeev, Phys. Lett. B519, 199 (2001) [arXiv:hep-ph/0106202].
  24. B.I. Abelev et al. [STAR Collaboration], Phys. Rev. Lett. 98, 192301 (2007)
  25. Erratum-ibid. 106 (2011) 159902 [arXiv:nucl-ex/0607012].
  26. S.S. Adler et al. [PHENIX Collaboration], Phys. Rev. Lett. 96, 032301 (2006).
  27. P. Aurenche and B.G. Zakharov, JETP Lett. 90, 237 (2009) [arXiv:0907.1918].
  28. B.G. Zakharov, JETP Lett. 96, 616 (2013) [arXiv:1210.4148].
  29. B.G. Zakharov, J. Phys. G40, 085003 (2013) [arXiv:1304.5742].
  30. B.G. Zakharov, JETP Lett. 103, 363 (2016) [arXiv:1509.07020].
  31. B.G. Zakharov, JETP 129, 521 (2019) [arXiv:1912.04875].
  32. B.G. Zakharov, JETP Lett. 80, 617 (2004) [arXiv:hep-ph/0410321].
  33. S. Shi, J. Liao, and M. Gyulassy, Chin. Phys. C43, 044101 (2019) [arXiv:1808.05461].
  34. D. Zigic, B. Ilic, M. Djordjevic, and M. Djordjevic, Phys. Rev. C101, 064909 (2020) [arXiv:1908.11866].
  35. B. Blok and K. Tywoniuk, Eur. Phys. J. C79, 560 (2019) [arXiv:1901.07864].
  36. B. Blok, Eur. Phys. J. C80, 729 (2020) [arXiv:2002.11233].
  37. B. Blok, Eur. Phys. J. C81, 832 (2021) [arXiv:2009.00465].
  38. R. Rapp, P.B. Gossiaux, A. Andronic, R. Averbeck, S. Masciocchi, A. Beraudo,E. Bratkovskaya, P. Braun-Munzinger, S. Cao, A. Dainese, S.K. Das, M. Djordjevic, V. Greco, M. He, H. van Hees, G. Inghirami, O. Kaczmarek, Y.-J. Lee, J. Liao, S.Y.F. Liu, G. Moore, M. Nahrgang, J. Pawlowski, P. Petreczky,S. Plumari, F. Prino, S. Shi, T. Song, J. Stachel, I. Vitev, and X.-N. Wang, Nucl. Phys. A979, 21 (2018) [arXiv:1803.03824].
  39. Zhong-Bo Kang, F. Ringer, and I. Vitev, JHEP 03, 146 (2017) [arXiv:1610.02043].
  40. P. L'evai and U. Heinz, Phys. Rev. C57, 1879 (1998) [arXiv:hep-ph/9710463].
  41. B.G. Zakharov, JETP Lett. 88, 781 (2008) [arXiv:0811.0445].
  42. B.G. Zakharov, J. Phys. G48, 055009 (2021) [arXiv:2007.09772].
  43. S. Kretzer, H.L. Lai, F. Olness, and W.K. Tung, Phys. Rev. D69, 114005 (2004) [arXiv:hepph/0307022].
  44. K.J. Eskola, H. Paukkunen, and C.A. Salgado, JHEP 0904, 065 (2009) [arXiv:0902.4154].
  45. T. Sjostrand, L. Lonnblad, S. Mrenna, and P. Skands, arXiv:hep-ph/0308153.
  46. M. Cacciari, P. Nason, and R. Vogt, Phys. Rev. Lett. 95, 122001 (2005).
  47. A.H. Mahmood et al. [CLEO Collaboration], Phys. Rev. D70, 032003 (2004).
  48. R. Poling, invited talk at 4th Flavor Physics and CP Violation Conference, Vancouver, British Columbia, Canada, 9-12 Apr 2006, arXiv:hepex/0606016.
  49. B. Aubert et al. [BaBar Collaboration], Phys. Rev. D75, 072002 (2007) [arXiv:hepex/0606026].
  50. O. Kaczmarek and F. Zantow, Phys. Rev. D71, 114510 (2005) [arXiv:hep-lat/0503017].
  51. R. Baier, Y.L. Dokshitzer, A.H. Mueller, and D. Schiff, JHEP 0109, 033 (2001) [arXiv:hepph/0106347].
  52. J.D. Bjorken, Phys. Rev. D27, 140 (1983).
  53. D. Kharzeev and M. Nardi, Phys. Lett. B507, 121 (2001) [arXiv:nucl-th/0012025].
  54. B.G. Zakharov, JETP 124, 860 (2017) [arXiv:1611.05825].
  55. B.G. Zakharov, Eur. Phys. J. C78, 427 (2018) [arXiv:1804.05405].
  56. B. M�uller and K. Rajagopal, Eur. Phys. J. C43, 15 (2005) [arXiv:hep-ph/0502174].
  57. S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S.D. Katz, S. Krieg, C. Ratti, and K. K. Szabo, JHEP 1011, 077 (2010) [arXiv:1007.2580].
  58. J. Adam et al. [ALICE Collaboration], JHEP 03, 081 (2016) [arXiv:1509.06888].
  59. Tech. Rep. CMS-PAS-HIN-15-005 CERN Geneva; https://cds.cern.ch/record/2055466/files/HIN-15-005-pas.pdf (2015)
  60. S. Acharya et al. [ALICE Collaboration], JHEP 01, 174 (2022) [arXiv:2110.09420].
  61. A.M. Sirunyan et al. [CMS Collaboration], Phys. Lett. B782, 474 (2018) [arXiv:1708.04962].
  62. J. Adam et al. [ALICE Collaboration], Phys. Lett. B771, 467 (2017) [arXiv:1609.07104].
  63. S. Acharya et al. [ALICE Collaboration], Phys. Lett. B804, 135377 (2020) [arXiv:1910.09110].
  64. A.M. Sirunyan et al. [CMS Collaboration], Phys. Rev. Lett. 119, 152301 (2017) [arXiv:1705.04727].
  65. S. Acharya et al. [ALICE Collaboration], 2202.00815.
  66. A.M. Sirunyan et al. [CMS Collaboration], Phys. Rev. Lett. 123, 022001 (2019) [arXiv:1810.11102].
  67. J. Park, [for the ALICE Collaboration], PoS HardProbes2020, 034 (2021); doi: 10.22323/1.387.0034.
  68. D. Li, F. Si, Y. Zhao, P. Zhou, Y. Zhang, X. Li, and C. Yang, Phys. Lett. B832, 137249 (2022) [arXiv:2110.08769].
  69. S. Acharya et al. [ALICE Collaboration], JHEP 02, 150 (2019) [arXiv:1809.09371].
  70. A.M. Sirunyan et al. [CMS Collaboration], Phys. Lett. B816, 136253 (2021) [arXiv:2009.12628].
  71. Tech. Rep. CMS-PAS-HIN-21-003 CERN Geneva; https://cds.cern.ch/record/2806157/files/HIN-21-003-pas.pdf (2021).
  72. J. Adam et al. [STAR Collaboration], Phys. Rev. C99, 034908 (2019) [arXiv:1812.10224].
  73. A. Adare et al. [PHENIX Collaboration], Phys. Rev. C84, 044905 (2011) [arXiv:1005.1627].
  74. M.S. Abdallah et al. [STAR Collaboration], arXiv:2111.14615.
  75. B.G. Zakharov, JETP Lett. 112, 681 (2020) [arXiv:2011.01526].

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies