Nelineynoe pogloshchenie i fotolyuminestsentsiya nanotetrapodov CdTe s nakonechnikami CdSe pri nerezonansnom vozbuzhdenii eksitonov

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The nonlinear absorption and photoluminescence of CdTe/CdSe nanotetrapod colloids have been studied by the pump–probe method for the case of single-photon nonresonance excitation of excitons. A competition between the short-wave and long-wave shifts of the peak of photoluminescence associated with an indirect electron–hole transition, which is observed with increasing excitation radiation intensity, has been found and explained. The former shift is associated with an increase in the one-dimensional exciton radius after the exciton state occupation, and the latter shift may be attributed to the charge-induced Stark effect and local heating of nanotetrapods as a result of electron–phonon interaction at nonresonance excitation of the system.

Sobre autores

S. Gavrilov

Moscow State University, Faculty of Physics

Email: logbook1@yandex.ru
119991, Moscow, Russia

A. Smirnov

Moscow State University, Faculty of Physics; Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: logbook1@yandex.ru
119991, Moscow, Russia; 125009, Moscow, Russia

M. Kozlova

Moscow State University, Faculty of Materials Science

Email: logbook1@yandex.ru
119991, Moscow, Russia

R. Vasil'ev

Moscow State University, Faculty of Physics

Email: logbook1@yandex.ru
119991, Moscow, Russia

V. Dneprovskiy

Moscow State University, Faculty of Materials Science

Autor responsável pela correspondência
Email: logbook1@yandex.ru
119991, Moscow, Russia

Bibliografia

  1. E. Matijevi'c and W. D. Murphy, J. Colloid and Interface Sci. 86, 476 (1982).
  2. A. Fiore, R. Mastria, M. G. Lupo et al., J. Amer. Chem. Soc. 131, 2274 (2009).
  3. S. Deka, K. Miszta, D. Dorfs et al., Nano Lett. 10, 3770 (2009).
  4. S. Kumar, M. Jones, S. S. Lo, and G. D. Scholes, Small 3, 1633 (2007).
  5. S. Ithurria and B. Dubertret, J. Amer. Chem. Soc. 130, 16504 (2008).
  6. A. M. Smirnov, V. N. Mantsevich, D. S. Smirnov et al., Sol. St.Comm. 299, 113651 (2008).
  7. A. M. Smirnov, A. D. Golinskaya, B. M. Saidzhonov et al., J. Luminescence 229, 117682 (2021).
  8. A. S. Baimuratov, Y. K. Gun'ko, A. G. Shalkovskiy et al., Adv. Opt. Mater. 5, 1600982 (2017).
  9. C. Heyn, L. Ranasinghe, M. Zocher, and W. Hansen, J. Phys. Chem. C 124, 19809 (2020).
  10. L. V. Keldysh, Phys. Stat. Sol. (a) 164, 3 (1997).
  11. S. Malkmus, S. Kudera, L. Manna et al., J. Phys. Chem. B 110, 17334 (2006).
  12. D. J. Norris and M. G. Bawendi, Phys. Rev. B 53, 16338 (1996).
  13. P. A. Kotin, S. S. Bubenov, T. A. Kuznetsova, and S. G. Dorofeev, Mendeleev Comm. 25, 372 (2015).
  14. Y. Yang, Y. Jin, H. He et al., J. Amer. Chem. Soc. 132, 13381 (2010).
  15. A. M. Smirnov, A. D. Golinskaya, P. A. Kotin et al., J. Luminescence 213, 29 (2019).
  16. A. M. Smirnov, A. D. Golinskaya, P. A. Kotin et al., J. Phys. Chem. C 123, 27986 (2019).
  17. S. Dayal and C. Burda, J. Amer. Chem. Soc. 129, 7977 (2007).
  18. S. F. Wuister, A. van Houselt, C. de Mello Donega et al., Angew. Chem., Int. Ed. 43, 3029 (2004).
  19. M. Nirmal, C. B. Murray, and M. G. Bawendi, Phys. Rev. B 50, 2293 (1994).
  20. Y. Wang, A. Suna, J. McHugh et al., J. Chem. Phys. 92, 6927 (1990).
  21. P. A. Frantsuzov and R. A. Marcus, Phys. Rev. B 72, 155321 (2005).
  22. A. Katsaba, V. Fedyanin, S. Ambrozevich et al., Semiconductors 47, 1328 (2013).
  23. M. S. Zabolotskii, A. V. Katsaba, S. A. Ambrozevich et al., Phys. Stat. Sol. (RRL) 14, 2000167 (2020).
  24. A. V. Katsaba, S. A. Ambrozevich, V. V. Fedyanin et al., J. Luminescence 214, 116601 (2019).
  25. M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996).
  26. A. Vitukhnovsky, A. Shul'ga, S. Ambrozevich et al., Phys. Lett. A 373, 2287 (2009).
  27. H. Lee, S. W. Yoon, J. P. Ahn et al., Sol. Energy Mater. Sol. Cells 93, 779 (2009).
  28. H. Lee, S. Kim, W. S. Chung et al., Sol. Energy Mater. Sol. Cells 95, 446 (2011).
  29. D. Bera, L. Qian, T. K. Tseng, and P. H. Holloway, Materials (Basel) 3, 2260 (2010).
  30. N. Thondavada, R. Chokkareddy, N. V. Naidu, and G. G. Redhi, in Nanomaterials in Diagnostic Tools and Devices, ed. by S. Kanchi and D. Sharma, Elsevier Sci. Publ., Amsterdam (2020), p. 417.
  31. F. Chen, Q. Lin, H. Shen, and A. Tang, Mater. Chem. Frontiers 4, 1340 (2020).
  32. Z. Chen, B. Nadal, B. Mahler et al., Adv. Funct. Mater. 24, 295 (2014).
  33. R. B. Vasiliev, D. N. Dirin, M. S. Sokolikova et al., Mendeleev Comm. 19, 128 (2009).
  34. Y. S. Park, J. Roh, B. T. Diroll et al., Nature Rev. Mater. 6, 382 (2021).
  35. N. M. Radzi, A. A. Latif, M. F. Ismail et al., Results Phys. 16, 103123 (2020).
  36. B. Xu, S. Luo, X. Yan et al., IEEE J. Sel. Top. Quantum Electron. 23 (5), art. No. 1900507 (2017).
  37. R. B. Vasiliev, D. N. Dirin, M. S. Sokolikova et al., J. Mater. Res. 26, 1621 (2011).
  38. A. D. Golinskaya, A. M. Smirnov, M. V. Kozlova et al., Results Phys. 27, 104488 (2021).
  39. E. Groeneveld and C. de Mello Doneg'a, J. Phys. Chem. C 116, 16240 (2012).
  40. O. Svelto, Principles of Lasers, Springer, New York (2010).
  41. А. М. Смирнов, А. Д. Голинская, К. В. Ежова, ЖЭТФ 152, 1046 (2017).
  42. P. Peng, D. J. Milliron, S. M. Hughes et al., Nano Lett. 5, 1809 (2005).
  43. A. Granados del Aguila, E. Groeneveld, J. C. Maan et al., ACS Nano 10, 4102 (2016).
  44. C. de Mello Doneg'a, Phys. Rev. B 81, 165303 (2010).
  45. B. Chon, J. Bang, J. Park et al., J. Phys. Chem. C 115, 436 (2011).
  46. G. W. Wen, J. Y. Lin, H. X. Jiang, and Z. Chen, Phys. Rev. B 52, 5913 (1995).
  47. B. Yu, C. Zhang, L. Chen et al., J. Chem. Phys. 154, 214502 (2021).
  48. G. Morello, M. De Giorgi, S. Kudera et al., J. Phys. Chem. C 111, 5846 (2007).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies