Noether symmetries and some exact solutions inf(R, T2) Theory

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The main objective of this article is to examine some physically viable solutions through the Noether symmetry technique in f ( R, T 2) theory. In order to investigate Noether equations, symmetry generators and conserved quantities, we use a speci c model of this modi ed theory. We nd exact solutions and examine the behavior of various cosmological quantities. It is found the behavior these quantities is consistent with current observations indicating that this theory describes the cosmic accelerated expansion. We conclude that generators of Noether symmetry and conserved quantities exist in this theory.

About the authors

M. Sharif

The University of Lahore

Email: jetp@kapitza.ras.ru
Lahore-54000, Pakistan

M. Z Gul

The University of Lahore

Author for correspondence.
Email: jetp@kapitza.ras.ru
Lahore-54000, Pakistan

References

  1. A.V. Filippenko and A.G. Riess, Phys. Rep. 307, 31 (1998)
  2. M. Tegmark, M.A. Strauss, M.R. Blanton, K. Abazajian, S. Dodelson, H. Sandvik, X. Wang, D.H. Weinberg, I. Zehavi, N.A. Bahcall, and F. Hoyle, Phys. Rev. D 69, 103501 (2004).
  3. A.D. Felice and S.R. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)
  4. S. Nojiri and S.D. Odintsov, Phys. Rep. 505, 59 (2011).
  5. N. Katirci and M. Kavuk, Eur. Phys. J. Plus 129, 163 (2014).
  6. M. Roshan and F. Shojai, Phys. Rev. D 94, 044002 (2016).
  7. C.V.R. Board and J.D. Barrow, Phys. Rev. D 96, 123517 (2017).
  8. S. Bahamonde, M. Marciu, and P.Rudra, Phys. Rev. D 100, 083511 (2019).
  9. M. Sharif and M.Z. Gul, Phys. Scr. 96, 025002 (2021)
  10. Phys. Scr. 96, 125007 (2021)
  11. Chin. J. Phys. 80, 58 (2022).
  12. M. Sharif and M.Z. Gul, Int. J. Mod. Phys. A 36, 2150004 (2021)
  13. Universe 7, 154 (2021)
  14. Int. J. Geom. Methods Mod. Phys. 19, 2250012 (2021)
  15. Chin. J. Phys. 71, 365 (2021)
  16. Mod. Phys. Lett. A 37, 2250005 (2022).
  17. E. Noether, Tramp. Th. Stat, Phys 1, 189 (1918)
  18. T. Feroze, F.M. Mahomed, and A. Qadir, Nonlinear Dyn. 45, 65 (2006).
  19. S. Capozziello, M. De Laurentis, and S.D. Odintsov, Eur. Phys. J. C 72, 1434 (2012).
  20. S. Capozziello, R.D. Ritis, and A.A. Marino, Class. Quantum Gravity 14, 3259 (1997).
  21. S. Capozziello, G. Marmo, and C.P.Rubano, Int. J. Mod. Phys. D 6, 491 (1997).
  22. A.K. Sanyal, Phys. Lett. B 524, 177 (2002).
  23. U. Camci and Y. Kucukakca,: Phys. Rev. D 76, 084023 (2007).
  24. D. Momeni and H. Gholizade, Int. J. Mod. Phys. D 18, 1 (2009).
  25. Y. Kucukakca, U. Camci, and I. Semiz, Gen. Relat. Gravit. 44, 1893 (2012).
  26. S. Basilakos, S. Capozziello, M. De Laurentis, A. Paliathanasis, and M. Tsamparlis, Phys. Rev. D 88, 103526 (2013).
  27. U. Camci, Eur. Phys. J. C 74, 3201 (2014)
  28. J. Cosmol. Astropart. Phys. 07, 002 (2014).
  29. U. Camci and J. Cosmol, J. Cosmol. Astropart. Phys. 2014, 2 (2014).
  30. U. Camci, A. Yildirim, and I. Basaran, Astropart. Phys. 76, 29 (2016).
  31. S. Capozziello, S.J.G. Gionti, and D. Vernieri, J. Cosmol. Astropart. Phys. 1601, 015 (2016).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies