Kvantovye ostsillyatsii mezhsloynoy provodimosti v mnogosloynom topologicheskom izolyatore

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Quantum and difference oscillations of interlayer conductivity in a multilayer system of thin films of topological insulators (TIs) are investigated. Due to the linearity of the carrier spectrum in such a system, new features of quantum oscillations arise. In particular, the frequencies of de Haas–van Alfvén and Shubnikov–de Haas oscillations depend quadratically on the chemical potential, rather than linearly as in systems with parabolic carrier spectrum. For the same reason, the temperature damping factor of oscillations contains the chemical potential. This is due to the nonequidistant character of the Landau levels: the higher the chemical potential, the smaller the distance between Landau levels. However, the beat frequencies, as well as the frequencies of slow oscillations, do not depend on the chemical potential; in this sense, the behavior of these systems is similar to that of conventional non-Dirac systems. Finally, in the Born approximation (in the second order cross-diagram technique), we considered the general case when the interlayer conductivity takes into account both intra- and interband transitions. We have shown that the contribution of intraband transitions is insignificant for the conductivity oscillations in the absence of magnetic impurities. However, in the presence of a Dirac point in the spectrum, a linear (in magnetic field) intraband contribution to conductivity arises from the zero Landau level. At low temperatures, this contribution is exponentially small compared to the intraband contribution and vanishes at zero temperature.

Авторлар туралы

Z. Alisultanov

Abrikosov Center for Theoretical Physics, Moscow Institute of Physics and Technology; Amirkhanov Institute of Physics, Dagestan Federal Research Center, Russian Academy of Sciences

Email: zaur0102@gmail.com
141701, Dolgoprudny, Moscow oblast, Russia; 367015, Makhachkala, Russia

G. Abdullaev

Amirkhanov Institute of Physics, Dagestan Federal Research Center, Russian Academy of Sciences

Email: zaur0102@gmail.com
367015, Makhachkala, Russia

P. Grigor'ev

Landau Institute for Theoretical Physics, Russian Academy of Sciences; National University of Science and Technology MISIS

Email: zaur0102@gmail.com
142432, Chernogolovka, Moscow oblast, Russia; 119049, Moscow, Russia

N. Demirov

Joint Institute for High Temperatures, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: zaur0102@gmail.com
125412, Moscow, Russia

Әдебиет тізімі

  1. М.В. Карцовник, П.А. Кононович, В.Н. Лаухин, И.Ф.Щеголев, Письма в ЖЭТФ 48, 498 (1988)
  2. Sov.Phys. JETP Lett. 48, 541 (1988).
  3. М.В. Карцовник, П.А. Кононович, В.Н. Лаухин, С.И. Песоцкий, И.Ф.Щеголев,ЖЭТФ 97, 1 305 (1990)
  4. JETP 70, 735 (1990).
  5. M.V. Kartsovnik et al., J.Phys. I France 2, 89 (1992)
  6. J. Wosnitza et al., Synth.Metals 85, 1479 (1997).
  7. E. Ohmichi et al., Phys.Rev.B 57, 7481 (1998).
  8. P.D. Grigoriev, M.V. Kartsovnik, W. Biberacher, N.D. Kushch, and P. Wyder, Phys.Rev.B 65, 060403(R) (2002).
  9. J. Wosnitza, Fermi Surfaces of Low-Dimensional Organic Metals and Superconductors, Springer-Verlag, Berlin, Heidelberg (1996).
  10. T. Ishiguro, K. Yamaji and G. Saito, Organic Superconductors, 2nd Edition, Springer-Verlag, Berlin (1998).
  11. The Physics of Organic Superconductors and Conductors, ed. by A.G. Lebed, Springer-Verlag, Berlin, Heidelberg (2008).
  12. M.V. Kartsovnik, Chem.Rev. 104, 5737 (2004).
  13. M.V. Kartsovnik, P.D. Grigoriev, W. Biberacher, N.D. Kushch, and P. Wyder, Phys.Rev. Lett. 89, 126802 (2002).
  14. P.D. Grigoriev, M.V. Kartsovnik, and W. Biberacher, Phys.Rev.B 86, 165125 (2012).
  15. N. Tajima, T. Yamauchi, T. Yamaguchi, M. Suda, Y. Kawasugi, H.M. Yamamoto, R. Kato, Y. Nishio and K. Kajita, Phys.Rev.B 88, 075315 (2013).
  16. E. Tisserond et al., Europhys. Lett. 119, 67001 (2017).
  17. N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J.-B. Bonnemaison, R. Liang, D.A. Bonn, W.N. Hardy, and L. Taillefer, Nature 447, 565 (2007).
  18. S.E. Sebastian, N. Harrison, E. Palm, T.P. Murphy, C.H.Mielke, R. Liang, D.A.Bonn,W.N.Hardy, and G.G. Lonzarich, Nature (London) 454, 200 (2008)
  19. S. E. Sebastian and C. Proust, Annu. Rev. Condens. Matter Phys. 6, 411 (2015).
  20. S.E. Sebastian, N. Harrison, and G.G. Lonzarich, Rep.Prog.Phys. 75, 102501 (2012).
  21. B. Vignolle, D. Vignolles, M.-H. Julien, and C. Proust, C.R. Phys. 14, 39 (2013).
  22. S.E. Sebastian, N. Harrison, P.A. Goddard, M.M. Altarawneh, C.H. Mielke, R. Liang, D.A. Bonn, W.N. Hardy, O.K. Andersen, and G.G. Lonzarich, Phys.Rev.B 81, 214524 (2010).
  23. E.A. Yelland, J. Singleton, C.H. Mielke, N. Harrison, F. F. Balakirev, B. Dabrowski, and J.R. Cooper, Phys.Rev. Lett. 100, 047003 (2008).
  24. B. S. Tan, N. Harrison, Z. Zhu, F. Balakirev, B. J. Ramshaw, A. Srivastava, S.A. Sabok-Sayr, B. Dabrowski, G.G. Lonzarich, and S.E. Sebastian, Proc.Natl.Acad. Sci.USA 112, 9568 (2015).
  25. T.Helm, M.V.Kartsovnik, M.Bartkowiak, N.Bittner, M. Lambacher, A. Erb, J. Wosnitza, and R. Gross, Phys.Rev. Lett. 103, 157002 (2009).
  26. T. Helm, M.V. Kartsovnik, C. Proust, B. Vignolle, C. Putzke, E. Kampert, I. Sheikin, E.-S. Choi, J. S. Brooks, N. Bittner, W. Biberacher, A. Erb, J.Wosnitza, and R. Gross, Phys.Rev.B 92, 094501 (2015).
  27. T. Terashima, N. Kurita, M. Tomita, K. Kihou, C.-H. Lee, Y. Tomioka, T. Ito, A. Iyo, H. Eisaki, T. Liang, M. Nakajima, S. Ishida, S.-I. Uchida, H. Harima, and S. Uji, Phys.Rev. Lett. 107, 176402 (2011).
  28. A. I. Coldea, D. Braithwaite, and A. Carrington, C.R.Phys. 14, 94 (2013).
  29. T. Terashima, N. Kikugawa, A. Kiswandhi, E.-S. Choi, J. S. Brooks, S. Kasahara, T. Watashige, H. Ikeda, T. Shibauchi, Y. Matsuda, T. Wolf, A.E. B¨ohmer, F. Hardy, C. Meingast, H. v. L¨ohneysen, M.-T. Suzuki, R. Arita, and S. Uji, Phys. Rev.B. 90, 144517 (2014).
  30. Superlattices and Other Heterostructures, by E. L. Ivchenko and G.E. Pikus, Springer Berlin, Heidelberg (1997); https://doi.org/10.1007/978-3-642-60650-2.
  31. K. Enomoto, S. Uji, T. Yamaguchi, T. Terashima, T. Konoike, M. Nishimura, T. Enoki, M. Suzuki, and I. S. Suzuki, Phys.Rev.B 73, 045115 (2006).
  32. Lei et al., Sci.Adv. 6, 6407 (2020).
  33. P. D. Grigoriev, A. A. Sinchenko, P. Lejay, A. Hadj-Azzem, J. Balay, O. Leynaud, V.N. Zverev, and P. Monceau, Eur.Phys. J.B 89, 151 (2016).
  34. В. М. Гвоздиков, ФТТ 26, 2574 (1984)
  35. Sov.Phys. Solid State 26(9), 1560 (1984).
  36. T. Maniv and I.D. Vagner, Phys.Rev.B 38, 6301 (1988).
  37. P. Grigoriev, I. Vagner, Письма вЖЭТФ, 69, 139 (1999)
  38. JETP Lett 69, 156 (1999).
  39. P. Moses and R.H. McKenzie, Phys.Rev.B 60, 7998 (1999).
  40. T. Champel and V.P. Mineev, Philos.Mag.B 81, 55 (2001).
  41. P.D. Grigoriev, ЖЭТФ 119, 1257 (2001)
  42. JETP 92, 1090 (2001).
  43. T. Champel, Phys.Rev.B 64, 054407 (2001).
  44. T. Champel and V.P. Mineev, Phys.Rev.B 66, 195111 (2002).
  45. P.D. Grigoriev, Phys.Rev.B 67, 144401 (2003).
  46. V. M. Gvozdikov, Yu. V. Pershin, E. Steep, A.G.M. Jansen, and P. Wyder, Phys. Rev. B 65, 165102 (2002).
  47. C.Bergemann, S.R. Julian, A.P.Mackenzie, S.NishiZaki, and Y. Maeno, Phys.Rev. Lett. 84, 2662 (2000).
  48. P.D. Grigoriev, Phys.Rev.B 81, 205122 (2010).
  49. P.D. Grigoriev, Phys.Rev.B 83, 245129 (2011).
  50. P.D. Grigoriev, Phys.Rev.B 88, 054415 (2013).
  51. P.D. Grigoriev and T. I. Mogilyuk, Phys.Rev.B 90, 115138 (2014).
  52. P.D. Grigoriev and T. I. Mogilyuk, Phys.Rev.B 95, 195130 (2017).
  53. P.D. Grigoriev and T. Ziman, Phys.Rev.B 96, 165110 (2017).
  54. T. I. Mogilyuk and P.D. Grigoriev, Phys.Rev.B 98, 045118 (2018).
  55. A.A. Abrikosov, Fundamentals of the Theory of Metals, North Holland, Amsterdam (1988).
  56. J.M. Ziman, Principles of the Theory of Solids, Cambridge University, Cambridge, England, (1972).
  57. D. Shoenberg, Magnetic Oscillations in Metals, Cambridge University, Cambridge, England, (1984).
  58. Bodo Huckestein Rev.Mod.Phys. 67, 357 (1995).
  59. S.A. J. Wiegers, M. Specht, L.P. Levy, M.Y. Simmons, D.A. Ritchie, A. Cavanna, B. Etienne, G. Martinez, and P. Wyder, Phys.Rev. Lett. 79, 3238 (1997).
  60. А.А. Быков, Письма в ЖЭТФ 88, 70 (2008).
  61. А.А. Быков, Д.В. Номоконов, А.В. Горан и др. Письма в ЖЭТФ 114, 486 (2021).
  62. G. M. Minkov, O. E. Rut, A. A. Sherstobitov, S.A. Dvoretski, N.N. Mikhailov, V.A. Solov'ev, M.Yu. Chernov, S.V. Ivanov, and A.V. Germanenko Phys.Rev.B 101, 245303 (2020).
  63. A.A. Burkov and Leon Balents, Phys.Rev. Lett. 107, 127205 (2011)
  64. A.A. Zyuzin, Si Wu, and A.A. Burkov, Phys. Rev.B 85, 165110 (2012)
  65. G. Zhang et al., Appl.Phys. Lett. 95, 053114 (2009)
  66. H. Peng et al., Nature Mater. 9, 225 (2009)
  67. Y. Zhang et al., Nature Phys. 6, 584 (2010)
  68. W. Zhang, R. Yu, H.-J. Zhang, X. Dai, and Zh. Fang, New J.Phys., 12(6), 065013 (2010).
  69. Ch.-X. Liu, X.-L. Qi, H. J. Zhang, X. Dai, Zh. Fang, and Sh.-Ch. Zhang, Phys.Rev.B 82(4), 045122 (2010)
  70. J. Linder, T. Yokoyama, and A. Sudbø, Phys. Rev. B 80, 205401 (2009).
  71. C. Liu, H. Zhang, B. Yan, X. Qi, T. Frauenheim, X. Dai, Z. Fang, and S. Zhang, Phys.Rev.B 81, 041307 (2010)
  72. H. Lu, W. Shan, W. Yao, Q. Niu, and S. Shen, Phys.Rev.B 81, 115407 (2010)
  73. J.-P. Xu, M.-X. Wang, Zh. L. Liu et. al., Phys.Rev. Lett. 114, 017001 (2015)
  74. N.P. Armitage, E. J. Mele, and A. Vishwanath, Rev.Mod.Phys. 90, 015001 (2018)
  75. З. З Алисултанов, ЖЭТФ 152 986 (2017)
  76. Z. Z. Alisultanov, JETP 125, 836 (2017).
  77. Z. Z. Alisultanov, Sci.Rep. 8, 13707 (2018).

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>