Issledovanie sverkhtonkikh vzaimodeystviy v sintezirovannykh pri vysokom davlenii soedineniyakh Y(Fe1-xNix)2 (0 x 1) metodom Messbauerovskoy spektroskopii

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The measurements of magnetic hyperfine fields (MHF), Hhf, and isomer shift, δ, in Y(Fe1 – xNix)2 intermetallic compounds (the MgCu2 structure type) synthesized at high pressure are performed. The MHF values that appear on 57Fe nuclei at a nickel concentration x below 20 at % practically do not change and are approximately equal to 22 T, and in the range from x = 0.4 to 0.98 they decrease linearly with an increase in the Ni concentration. However, linear extrapolation of the hyperfine field as a function of Ni concentration does not lead to its disappearance in YNi2. For YFe2, the rotation of the easy axis from the [101] direction to the [111] direction with increasing temperature is found. As the Ni concentration increases to x = 0.3 at a temperature of 5 K, the easy magnetization axis [101] is observed, and at x = 0.4 the axis changes direction to [100]. Based on the shape of the concentration dependence of the hyperfine field, it is assumed that during the crystallization of Y(Fe1 – xNix)2 under high pressure conditions, a magnetic moment exists on Ni ions. First-principles calculations of magnetic properties and hyperfine interactions are performed, which are consistent with experiment.

Авторлар туралы

A. Bokov

Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences; Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University

Email: bokov@hppi.troitsk.ru
108840, Moscow, Russia; 119991, Moscow, Russia

M. Magnitskaya

Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences; Lebedev Physical Institute, Russian Academy of Sciences

Email: bokov@hppi.troitsk.ru
108840, Moscow, Russia; 119991, Moscow, Russia

D. Salamatin

Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences

Email: bokov@hppi.troitsk.ru
108840, Moscow, Russia

A. Tsvyashchenko

Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: bokov@hppi.troitsk.ru
108840, Moscow, Russia

Әдебиет тізімі

  1. L. J. Parker, T. Atou, and J. V. Badding, Science 273, 95 (1996).
  2. А. В. Цвященко, Л. Н. Фомичева, М. В. Магницкая и др., Письма в ЖЭТФ 68, 864 (1998).
  3. A. V. Tsvyashchenko, L. N. Fomicheva, M. V. Magnitskaya et al., The Physics of Metals and Metallography 93, S59 (2002).
  4. A. A. Adeleke and Y. Yao, J. Chem. Phys. 124, 4752 (2020).
  5. F. Stein and A. Leineweber, J. Mater. Sci. 56, 5321 (2021).
  6. C. Ritter, J. Phys.: Condens. Matter 1, 2765 (1989).
  7. A. Posinger, M. Reissner, W. Steiner et al., J. Phys.: Condens. Matter 5, 7277 (1993).
  8. V. Paul-Boncour, A. Lindbaum, M. Latroche et al., Intermetallics 14, 483 (2006).
  9. M. Forker, P. de la Presa, and A. F. Pasquevich, J. Phys.: Condens. Matter 18, 253 (2005).
  10. E. Gratz and A. S. Markosyan, J. Phys.: Condens. Matter 13, R385 (2001).
  11. F. Z. Mohammad, S. Yehia, and S. Aly, Int. J. Phys. and Appl. 2, 135 (2010).
  12. O. Myakush, V. Babizhetskyy, P. Myronenko et al., Chem. Met. Alloys 4, 152 (2011).
  13. A. V. Tsvyashchenko, L. N. Fomicheva, and S. D. Antipov, J. Magn. Magn. Mater. 98, 285 (1991).
  14. L. G. Khvostantsev, V. N. Slesarev, and V. V. Brazhkin, High Press. Res. 24, 371 (2004).
  15. A. V. Tsvyashchenko, J. Less Comm. Met. 99, L9 (1984).
  16. С. И. Рейман, Н. И. Рохлов, В. С. Шпинель и др., ЖЭТФ 86, 330 (1984).
  17. А. С. Меченов, Регуляризованный метод наименьших квадратов, Изд-во Моск. ун-та, Москва (1988).
  18. M. G. Luijpen, P. C. M. Gubbens, A. M. van der Kraan et al., Physica B+C 86-88, 141 (1977).
  19. G. J. Bowden, D. St. P. Bunbury, A. P. Guimaraes et al., J. Phys. C 1, 1376 (1968).
  20. K. H. J. Buschow, Rep. Progr. Phys. 40, 1179 (1977).
  21. K. Itoh, K. Kanematsu, and K.-I. Kobayashi, J. Phys. Soc. Jpn 58, 4650 (1989).
  22. M. J. Besnus, P. Bauer, and J. M. Genin, J. Phys. F 8, 191 (1978).
  23. S. K. Arif, I. Sigalas, and D. S. T. P. Bunbury, Phys. Stat. Sol. (a) 41, 585 (1977).
  24. A. M. van der Kraan and P. C. M. Gubbens, J. Phys. Colloques 35, C6-469 (1974).
  25. R. M. Moon, W. C. Koehler, and J. Farrell, J. Appl. Phys. 36, 978 (1965).
  26. O. Eriksson, B. Johansson, M. S. S. Brooks et al., Phys. Rev. B 40, 9519 (1989).
  27. K. Yoshimura, Y. Yoshimoto, M. Mekata et al., J. Magn. Magn. Mater. 70, 147 (1987).
  28. T. Goto, K. Fukamichi, T. Sakakibara et al., Sol. St.Comm. 72, 945 (1989).
  29. A. V. Tsvyashchenko, L. N. Fomicheva, E. N. Shirani et al., Phys. Rev. B 55, 6377 (1997).
  30. P. Blaha, K. Schwarz, F. Tran et al., J. Chem. Phys. 152, 074101 (2020).
  31. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>