Obrazovanie, diffuziya i rost gazonapolnennykh puzyr'kov v γ-urane pri izbytke mezhdouzel'nykh atomov: svyaz' molekulyarnoy dinamiki i kinetiki

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The formation of gas nanobubbles through the merging of individual fission products of uranium is an important process for the evolution of nuclear fuels. The theoretical description of this process is very difficult because both the dynamics of individual atoms in the lattice and the kinetics of evolution of an ensemble of bubbles should be taken into account within a unified model. Such a model is constructed in this work on the basis of molecular dynamics simulations for xenon bubbles in bcc uranium in the case of the excess of interstitial atoms in the crystal matrix. The analysis is based on the molecular dynamics simulation of the nonequilibrium process of formation of xenon nanobubbles from individual Xe atoms dissolved in the crystal matrix. A relation between the size of bubbles and the number of gas atoms in them, as well as the dependence of the diffusion coefficient of bubbles on their radius and the number of interstitial atoms in the γ-U matrix, has been analyzed. A kinetic model of evolution of the ensemble of bubbles has been proposed to describe the molecular dynamics results and to extrapolate them to long times.

Sobre autores

E. Lobashev

Joint Institute for High Temperatures, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: obashev.ea@phystech.edu
125412, Moscow, Russia; 141701, Dolgoprudny, Moscow oblast, Russia

A. Antropov

Joint Institute for High Temperatures, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: antropov@phystech.edu
125412, Moscow, Russia; 141701, Dolgoprudny, Moscow oblast, Russia

V. Stegaylov

Joint Institute for High Temperatures, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University); National Research University Higher School of Economics

Autor responsável pela correspondência
Email: obashev.ea@phystech.edu
101000, Moscow, Russia; 141701, Dolgoprudny, Moscow oblast, Russia; 101000, Moscow, Russia

Bibliografia

  1. M. Tonks, D. Andersson, R. Devanathan, R. Dubourg, A. El-Azab, M. Freyss, F. Iglesias, K. Kulacsy, G. Pastore, S. R. Phillpot et al., J. Nucl. Materials 504, 300 (2018).
  2. J. Rest, M. Cooper, J. Spino, J. Turnbull, P. Van U elen, and C. Walker, J. Nucl. Materials 513, 310 (2019).
  3. H. Trinkaus and B. Singh, J. Nucl. Materials 323, 229 (2003).
  4. G. Pastore, D. Pizzocri, C. Rabiti, T. Barani, P. Van U elen, and L. Luzzi, J. Nucl. Materials 509, 687 (2018).
  5. Z. Qian, W. Liu, R. Yu, Y. Tao, D. Yun, and L. Gu, J. Nucl. Materials 556, 53188 (2021).
  6. D. Olander and D. Wongsawaeng, J. Nucl. Materials 354, 94 (2006).
  7. M. Veshchunov, V. Ozrin, V. Shestak, V. Tarasov, R. Dubourg, and G. Nicaise, Nucl. Eng. and Design 236, 179 (2006).
  8. A. Volkov and A. Ryazanov, J. Nucl. Materials 273, 155 (1999).
  9. R. E. Voskoboinikov and A. E. Volkov, J. Nucl. Materials 282, 66 (2000).
  10. R. E. Voskoboinikov and A. E. Volkov, J. Nucl. Materials 297, 262 (2001).
  11. J. Rest, J. Nucl. Materials 402, 179 (2010).
  12. L. Noirot, J. Nucl. Materials 447, 166 (2014).
  13. M. Veshchunov and V. Shestak, J. Nucl. Materials 376, 174 (2008).
  14. L. Verma, L. Noirot, and P. Maugis, J. Nucl. Materials 528, 151874 (2020).
  15. J. Evans, J. Nucl. Materials 210, 21 (1994).
  16. А. С. Антропов, В. Д. Озрин, В. В. Стегайлов, В. И. Тарасов, ЖЭТФ 156, 125 (2019).
  17. A. Antropov and V. Stegailov, J. Nucl. Materials 533, 152110 (2020).
  18. A. Antropov and V. Stegailov, J. Nucl. Materials 551, 152942 (2021).
  19. E. Gruber, J. Appl. Phys. 38, 243 (1967).
  20. S. Chandrasekhar, Rev. Mod. Phys. 15, 59 (1943).
  21. E. Moore, L. R. Corrales, T. Desai, and R. Devanathan, J. Nucl. Materials 419, 140 (2011).
  22. S. Murphy, A. Chartier, L. Van Brutzel, and J.-P. Crocombette, Phys. Rev. B 85, 144102 (2012).
  23. A. Jelea, R.-M. Pellenq, and F. Ribeiro, J. Nucl. Materials 444, 153 (2014).
  24. X.-Y. Liu and D. Andersson, J. Nucl. Materials 462, 8 2015
  25. L. Yang and B. Wirth, J. Nucl. Materials 544, 152730 (2021).
  26. Z. Xiao, Y. Wang, S. Hu, Y. Li, and S.-Q. Shi, Comp. Mat. Sci. 184, 109867 (2020).
  27. K. Nogita and K. Une, Nucl. Inst. and Met. in Phys. Res. Sec. B: Beam Interact. with Mat. and Atoms 141, 481 1998.
  28. G. Greenwood, A. Foreman, and D. Rimmer, J. Nucl. Materials 1, 305 1959.
  29. H. Xiao, C. Long, X. Tian, and S. Li, Mat. and Design 74, 55 2015.
  30. S. Hu, W. Setyawan, V. V. Joshi, and C. A. Lavender, J. Nucl. Materials 490, 49 2017.
  31. D. Yun, M. A. Kirk, P. M. Baldo, J. Rest, A. M. Yacout, and Z. Z. Insepov, J. Nucl. Materials 437, 240 2013.
  32. D. Yun, J. Rest, W. Zhang, X. Xie, W. Liu, and L. Gu, J. Nucl. Materials 540, 152409 (2020).
  33. W. Zhang, D. Yun, and W. Liu, Materials 12, 2354 (2019).
  34. G. Smirnov and V. Stegailov, J. Phys.: Cond. Mat. 31, 235704 (2019).
  35. D. E. Smirnova, A. Y. Kuksin, S. V. Starikov, V. V. Stegailov, Z. Insepov, J. Rest, and A. M. Yacout, Modell. Simul. Mater. Sci. Eng. 21, 035011 2013.
  36. D. Yun, Y. Miao, R. Xu, Z. Mei, K. Mo, W. Mohamed, B. Ye, M. J. Pellin, and A. M. Yacout, J. Nucl. Materials 471, 272 2016.
  37. B. Beeler, S. Hu, Y. Zhang, and Y. Gao, J. Nucl. Materials 530, 151961 (2020).
  38. B. Beeler, M. W. Cooper, Z.-G. Mei, D. Schwen, and Y. Zhang, J. Nucl. Materials 543, 152568 (2021).
  39. J. French and X.-M. Bai, J. Nucl. Materials 565, 153744 (2022).
  40. I. Novoselov, A. Yanilkin, A. Shapeev, and E. Podryabinkin, Comp. Mat. Sci. 164, 46 (2019).
  41. R. Ryltsev and N. Chtchelkatchev, J. Mol. Liq. 349, 118181 (2022).
  42. A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).
  43. Г. Э. Норман, В. В. Стегайлов, Мат. Мод. 24, 3 (2012).
  44. A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in't Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen et al., Computer Physics Communications 271, 108171 (2022).
  45. A. Shamsutdinov, M. Khalilov, T. Ismagilov, A. Piryugin, S. Biryukov, V. Stegailov, and A. Timofeev, in International Conference on Mathematical Modeling and Supercomputer Technologies (Springer, 2020), p. 401.
  46. W. J¨ager, R. Manzke, H. Trinkaus, G. Crecelius, R. Zeller, J. Fink, and H. Bay, J. Nucl. Materials 111, 674 (1982).
  47. M. Methfessel, D. Hennig, and M. Sche er, Phys. Rev. B 46, 4816 (1992).
  48. W. Tyson, Canadian Metal. Quart. 14, 307 (1975).
  49. Z. Insepov, J. Rest, A. Yacout, A. Y. Kuksin, G. Norman, V. Stegailov, S. Starikov, and A. Yanilkin, J. Nucl. Materials 425, 41 (2012).
  50. V. V. Dremov, P. V. Chirkov, and A. V. Karavaev, Sci. Rep. 11, 1 (2021).
  51. D. Seitov, K. Nekrasov, A. Y. Kupryazhkin, S. Gupta, and A. Usseinov, Phys. Res. Sec. B 476, 26 (2020).
  52. N. Kondratyuk, V. Nikolskiy, D. Pavlov, and V. Stegailov, Int. J. High Perf.Comp. Appl. 35, 312 (2021).
  53. A. Leenaers, W. Van Renterghem, and S. Van den Berghe, J. Nucl. Materials 476, 218 (2016).
  54. H. Xie, N. Gao, K. Xu, G.-H. Lu, T. Yu, and F. Yin, Acta Materialia 141, 10 (2017).
  55. A. V. Nazarov, A. A. Mikheev, and A. P. Melnikov, J. Nucl. Materials 532, 152067 (2020).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies