Forma spektra i svetovoy sdvig rezonansa kogerentnogo pleneniya naselennostey v yacheykakh s antirelaksatsionnym pokrytiem stenok v modelyakh zerkal'nogo i diffuznogo otrazheniya

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the motion of atoms in a cell free of a buffer gas with an antirelaxation wall coating on the spectrum and shift of the coherent population trapping resonance. We compare two types of reflection of atoms, viz., elastic (specular) and diffuse reflection, when the velocity of an atom after its reflection is determined by the wall temperature, as well by the quality of the antirelaxation wall coating. It is shown that for both types of reflection, a nonmonotonic dependence of the coherent population trapping resonance shift on the cell size is observed. In the case of diffuse reflection, the shift can change sign, and a complex two-hump structure of the coherent population trapping resonance is observed in a certain range of cell lengths. The dependence of the detected effects on the laser radiation spectral width is analyzed.

作者简介

K. Barantsev

Peter the Great St. Petersburg Polytechnic University

Email: ims@is12093.spb.edu
195251, St. Petersburg, Russia

G. Voloshin

Peter the Great St. Petersburg Polytechnic University

Email: ims@is12093.spb.edu
195251, St. Petersburg, Russia

A. Kuraptsev

Peter the Great St. Petersburg Polytechnic University

Email: ims@is12093.spb.edu
195251, St. Petersburg, Russia

A. Litvinov

Peter the Great St. Petersburg Polytechnic University

Email: andrey.litvinov@mail.ru
195251, St. Petersburg, Russia

I. Sokolov

Peter the Great St. Petersburg Polytechnic University

编辑信件的主要联系方式.
Email: ims@is12093.spb.edu
195251, St. Petersburg, Russia

参考

  1. G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, Nuovo Cim. B 36, 5 (1976).
  2. E. Arimondo and G. Orriols, Lett. Nuovo Cim. 17, 333 (1976).
  3. H. R. Gray, R. M. Whitley, and C. R. Stroud, Jr., Opt. Lett. 3, 218 (1978).
  4. Б. Д. Агапьев, М. Б. Горный, Б. Г. Матисов, Ю. В. Рождественский, УФН 163 (9), 1 (1993).
  5. М. Б. Горный, Б. Г. Матисов, Ю. В. Рождественский, ЖЭТФ 68, 728 (1989).
  6. S. Harris, Phys. Today 50, 36 (1997).
  7. A. Akulshin, A. Celikov, and V. Velichansky, Opt.Comm. 84, 139 (1991).
  8. P. D. D. Schwindt, S. Knappe, Vishal Shah, L. Hollberg, and J. Kitching, Appl. Phys. Lett. 85, 6409 (2004).
  9. V. Andryushkov, D. Radnatarov, and S. Kobtsev, Appl. Opt. 61, 3604 (2022).
  10. О. А. Кочаровская, Я. И. Ханин, Письма в ЖЭТФ 48, 581 (1988).
  11. M. D. Lukin, Rev. Mod. Phys. 75, 457 (2003).
  12. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
  13. R. Zhang and X.-B. Wang, Phys. Rev. A 94, 063856 (2016).
  14. J. Vanier, Appl. Phys. B 81, 421 (2005).
  15. С. А. Зибров, В. Л. Величанский, А. С. Зибров, А. В. Тайченачев, В. И. Юдин, Письма в ЖЭТФ 82, 534 (2005).
  16. S. A. Zibrov, I. Novikova, D. F. Phillips, R. L. Walsworth, A. S. Zibrov, V. L. Velichansky, and V. I. Yudin, Phys. Rev. A 81, 013833 (2010).
  17. J. Kitching, Appl. Phys. Rev. 5, 031302 (2018).
  18. S. Kobtsev, S. Donchenko, S. Khripunov, D. Radnatarov, I. Blinov, and V. Palchikov, Opt. Laser Technol. 119, 105634 (2019).
  19. M. Gozzelino, S. Micalizio, C. E. Calosso, A. Godone, H. Lin, and F. Levi, IEEE Trans. Ultrason., Ferroelectr., Freq. Control 68, 872 (2021).
  20. M. Petersen, M. A. Ha z, E. de Clercq, and R. Boudot, JOSA B 39, 910 (2022).
  21. H. Robinson, E. Ensberg and H.T. Dehmel, Bull. Am. Phys. Soc. 3, 9 (1958).
  22. S. J. Seltzer and M. V. Romalis, J. Appl. Phys. 106, 114905 (2009).
  23. M. V. Balabas, K. Jensen, W. Wasilewski, H. Krauter, L. S. Madsen, J. H. Mu¨ller, T. Fernholz, and E. S. Polzik, Opt. Express 18, 5825 (2010).
  24. M. V. Balabas, T. Karaulanov, M. P. Ledbetter, and D. Budker, Phys. Rev. Lett. 105, 070801 (2010).
  25. S. N. Atutov, A. I. Plekhanov, V. A. Sorokin, S. N. Bagayev, M. N. Skvortsov, and A. V. Taichenachev, Eur. Phys. J. D 72, 155 (2018).
  26. M. T. Graf, D. F. Kimball, S. M. Rochester, K. Kerner, C. Wong, D. Budker, E. B. Alexandrov, and M. V. Balabas, Phys. Rev. A 72, 023401 (2005).
  27. D. Budker, L. Hollberg, D. F. Kimball, J. Kitching, S. Pustelny, and V.V. Yashchuk, Phys. Rev. A 71, 012903 (2005).
  28. G. Kazakov, B. Matisov, A. Litvinov, and I. Mazets., J. Phys. B 40, 3851 (2007).
  29. G. A. Kazakov, A. N. Litvinov, B. G. Matisov, V. I. Romanenko, L. P. Yatsenko, and A. V. Romanenko, J. Phys. B 44, 235401 (2011).
  30. S. Gateva, L. Gurdev, E. Alipieva, E. Taskova, and G. Todorov, J. Phys. B 44(3), 035401 (2011).
  31. H.-J. Lee and H.S. Moon, J. Korean Phys. Soc. 63, 890 (2013).
  32. K.A. Barantsev, S.V. Bozhokin, A. S. Kuraptsev, A.N. Litvinov, and I.M. Sokolov, JOSA B 38, 1613 (2021).
  33. K. Nasyrov, S. Gozzini, A. Lucchesini, C. Marinelli, S. Gateva, S. Cartaleva, and L. Marmugi, Phys. Rev. A 92, 043803 (2015).
  34. К.А. Насыров, Автометрия 52, 85 (2016).
  35. M. Bhattarai, V. Bharti, V. Natarajan, A. Sargsyan, and D. Sarkisyan, Phys. Lett. A 383, 191 (2019).
  36. E. Taskova and E. Alipieva, J. Phys. Conf. Ser. 1859, 012025 (2021).
  37. Е. А. Алипиева, Е. Т. Таскова, Г. Ц. Тодоров, В. А. Полищук, Т. А. Вартанян, Опт. и спектр. 127, 373 (2019).
  38. К. А. Баранцев, А. С. Курапцев, А. Н. Литвинов, ЖЭТФ 160, 611 (2021).
  39. А. Н. Литвинов, И. М. Соколов, Письма в ЖЭТФ 113, 791 (2021).
  40. A. S. Kuraptsev and I. M. Sokolov, Phys. Rev. A 90, 012511 (2014).
  41. S. E. Skipetrov and I. M. Sokolov, Phys. Rev. B 98, 064207 (2018).
  42. К. А. Баранцев, Е. Н. Попов, А. Н. Литвинов, ЖЭТФ 148, 869 (2015).
  43. M. A. Bouchiat and J. Brossel, Phys. Rev. 147, 41 (1966).
  44. В. П. Силин, Введение в кинетическую теорию газов, Наука, Москва (1971).
  45. R. H. Dicke, Phys. Rev. 89, 472 (1953).

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##