Korrektsiya volnovogo fronta dlya nablyudeniya ekzoplanety na fone difraktsionnoy okrestnosti zvezdy

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We propose and investigate a precise wavefront correction method for the astronomical observation of exoplanets in the diffraction stellar vicinity. We show the applicability of the method for measuring and correcting the wavefront in the scheme of a telescope and an interferometric coronagraph without applying any Hartmann wavefront sensors. In our laboratory experiment we achieved a correction accuracy ~λ/50 and a coronagraphic contrast better than 105. We outline the prospects for increasing the correction accuracy to a target value of λ/500 to visualize the Earth in the vicinity of the Sun observed from a distance of 10 pc (in the immediate neighborhood of the Solar System) through an additional amplitude correction and the inclusion of non-common-path aberrations.

Sobre autores

A. Yudaev

Space Research Institute, Russian Academy of Sciences

Email: yudaev@phystech.edu
117997, Moscow, Russia

I. Shashkova

Space Research Institute, Russian Academy of Sciences

Email: yudaev@phystech.edu
117997, Moscow, Russia

A. Kiselev

Space Research Institute, Russian Academy of Sciences

Email: yudaev@phystech.edu
117997, Moscow, Russia

A. Komarova

Space Research Institute, Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: yudaev@phystech.edu
117997, Moscow, Russia; 141701, Dolgoprudny, Moscow oblast, Russia

A. Tavrov

Space Research Institute, Russian Academy of Sciences

Autor responsável pela correspondência
Email: yudaev@phystech.edu
117997, Moscow, Russia

Bibliografia

  1. W. Traub and B. Oppenheimer, in Exoplanets, ed. by S. Seager, University of Arizona Press, Tucson, Arizona, (2011), pp. 111-156.
  2. A.V. Yudaev, O.Y. Yakovlev, A.V. Kiselev et al., Sol. Syst. Res. 55, 367 (2021).
  3. O. Guyon, Annu. Rev. Astron. Astrophys. 56, 315 (2018).
  4. D. Mawet, L. Pueyo, P. Lawson et al., ArXiv astroph/arXiv:1207.5481.
  5. O. Guyon, E.A. Pluzhnik, M.J. Kuchner et al., Astrophys. J. 167, 81 (2006).
  6. N.J. Kasdin, V.P. Bailey, B. Mennesson et al., Proc. SPIE 11443, Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave, 114431U (2020).
  7. A. Tavrov, S. Kameda, A. Yudaev et al., J. Astron. Telesc. Instrum. Syst. 4, 044001 (2018).
  8. P.N. Frolov, B.B. Shkurskii, A.V. Kiselev et al., Sol. Syst. Res. 47, 477 (2013).
  9. Дж. Гудмен, Введение в фурье-оптику, Мир, Москва (1970).
  10. H. Yang and X. Li, in Simulated Annealing, Theory with Applications, ed. by R. Chibante, IntechOpen, London, UK (2010), Ch. 15, p. 275.
  11. Y. Liu, J. Ma, B. Li et al., Proc. SPIE 8415, 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Large Mirrors and Telescopes, 841504 (2012).
  12. P.J. Bord'e and W.A. Traub, Astrophys. J. 638, 488 (2006).
  13. Jo. L. Sayson, G.Ruane, D. Mawet et al., J. Astron. Telesc. Instrum. Syst. 5, 019004 (2019).
  14. A.V. Tavrov, Y. Kobayashi, Y. Tanaka et al., Opt. Lett. 30, 2224 (2005).
  15. Оптический производственный контроль, под ред. Д. Малакары, Машиностроение, Москва (1985).
  16. M. Beaulieu, L. Abe, P. Martinez et al., Mon. Not. Roy. Astron. Soc. 469, 218 (2017).
  17. J. Krist, A.J. Riggs, J. McGuire et al., Proc. SPIE 10400, Techniques and Instrumentation for Detection of Exoplanets VIII, 1040004 (2017).
  18. https://holoeye.com/spatial-light-modulators/.
  19. I. Shashkova, B. Shkursky, P. Frolov et al., J. Astron. Telesc. Instrum. Syst. 2, 011011 (2015).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies