Классификация и динамика ультрабедных водородо-воздушных пламен в горизонтальных цилиндрических ячейках хеле - шоу

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

С помощью метода последовательно инвертированного проецирования изучена динамика ультрабедных водородо-воздушных пламен, свободно распространяющихся в горизонтальной цилиндрической ячейке Хеле - Шоу. Для количественной оценки двух выявленных характеристик динамики пламени - зависимости усредненных скоростей пламени от времени и зависимости начальной скорости пламени от стехиометрии исходной водородо-воздушной смеси - были предложены временное и стехиометрическое скейлинговые соотношения. Первое соотношение аппроксимирует зависимость пути фронта пламени в водородо-воздушных смесях с начальной концентрацией водорода, превышающей некоторое критическое значение. Второе соотношение аппроксимирует зависимости начальных скоростей фронта пламени от концентрации водорода. Наличие единых соотношений для топологически различных типов ультрабедных водородо-воздушных пламен может быть интерпретировано как дополнительное свидетельство наличия единого механизма перехода от дискретных фронтов изолированных шаровых пламен к квазинепрерывному фронту дефлаграционного пламени через каскад бифуркаций.

Об авторах

П. В Москалев

Воронежский государственный технический университет

Email: moskaleff@mail.ru

В. П Денисенко

Национальный исследовательский центр «Курчатовский институт»

И. А Кириллов

Национальный исследовательский центр «Курчатовский институт»

Список литературы

  1. A. von Humboldt and J. F. Gay-Lussac, Versuche ¨uber die Eudiometrischen Mittel und ¨uber das Verh¨altnis der Bestandtheile der Atmosphere, J.Phys. LX, 38 (1805).
  2. H. F. Coward and F. Brinsley, The Dilution-Limits of Inflammability of Gaseous Mixtures. Part I. The Determination of Dilution-Limits. Part II. The Lower Limits for Hydrogen, Methane, and Carbon Monoxide in Air, J.Chem. Soc.Trans. 105, 1859 (1914).
  3. D.E. Mallard and H. L. le Chatelier, ' Etude sur la Combustion des M'elanges Gazeux Explosifs, Ann.Mines. 4, 296 (1883).
  4. H. Bunte, ¨Uber die Neuere Entwickelung der Flammenbeleuchtung, Berichte der Deutschen Chemischen Gesellschaft 31, 5 (1898).
  5. P. Eitner, Untersuchungen ¨uber die Explosionsgrenzen Brennbarer Gase und D¨ampfe, Habilitationsschrift, M¨unchen (1902).
  6. G. Bohm and K. Clusius, Die Struktur Aufsteigender H2-O2-Flammen, Z.Naturforschg. 3a, 386 (1948).
  7. P.D. Ronney, Near-Limit Flame Structures at Low Lewis Number, Comb. Flame 82, 1 (1990).
  8. P.D. Ronney, K.N. Whaling, A. Abbud-Madrid et al., Stationary Premixed Flames in Spherical and Cylindrical Geometries, AIAA J. 32, 569 (1994).
  9. Я.Б. Зельдович, Теория горения и детонации газов, АН СССР, Москва (1944).
  10. P.D. Ronney, Understanding Combustion Processes through Microgravity Research, Proc.Combust. Inst. 27, 2485 (1998).
  11. K. Maruta, M. Yoshida, Y. Ju et al., Experimental Study on Methane-Air Premixed Flame Extinction at Small Stretch Rates in Microgravity, Proc.Combust. Inst. 26, 1283 (1996).
  12. R. Fursenko, S. Minaev, H. Nakamura et al., Cellular and Sporadic Flame Regimes of Low-Lewis-Number Stretched Premixed Flames, Proc.Combust. Inst. 34, 981 (2013).
  13. Y. L. Shoshin and L.P.H. de Goey, Experimental Study of Lean Flammability Limits of Methane/Hydrogen/Air Mixtures in Tubes of Different Diameters, Exp.Therm. Fluid Sci. 34, 373 (2010).
  14. Y. Shoshin, J. van Oijen, A. Sepman et al., Experimental and Computational Study of the Transition to the Flame Ball Regime at Normal Gravity, Proc.Combust. Inst. 33, 1211 (2011).
  15. F.E. Hern'andez-P'erez, B. Oostenrijk, Y. Shoshin et al., Formation, Prediction and Analysis of Stationary and Stable Ball-Like Flames at Ultra-Lean and Normal-Gravity Conditions, Combust. Flame 162, 932 (2015).
  16. G. Joulin and G. I. Sivashinsky, Influence of Momentum and Heat Losses on the Large-Scale Stability of Quasi-2D Premixed Flames, Combust. Sci.Tech. 98, 1 (1994).
  17. J. Sharif, M. Abid, and P.D. Ronney, Premixed-Gas Flame Propagation in Hele-Shaw Cells, in Spring Technical Meeting, US Section of Combustion Institute, March 15-17 (1999), p. 352
  18. J. Wongwiwat, J. Gross, and P.D. Ronney, Flame Propagation in Narrow Channels at Varying Lewis Numbers, in Proc. ICDERS-2015 (2015), p. 258
  19. C. Almarcha, J. Quinard, B. Denet et al., Experimental Two Dimensional Cellular Flames, Phys.Fluids, 27, 9 (2015).
  20. E. Al Sarraf, C. Almarcha, B. Radisson et al., Flame Instability in a Hele-Shaw Cell: Thickness Effect, in Proc. 8th European Combustion Meeting (2017), p. 357.
  21. M.M. Alexeev, O.Yu. Semenov, and S.E. Yakush. Experimental Study on Cellular Premixed Propane Flames in a Narrow Gap Between Parallel Plates, Combust. Sci.Technol. 191, 1256 (2019).
  22. M. Kuznetsov and J. Grune, Experiments on Flame Acceleration and DDT for Hydrogen/Air Mixtures in a Thin Layer Geometry, Int. J.Hydrog.Energy 44, 8727 (2019).
  23. F. Veiga-Lopez, M. Kuznetsov, J. Yanez et al., Flame Propagation Near the Limiting Conditions in a Thin Layer Geometry, in Proc. 8th ICHS (2019), p. 193.
  24. F. Veiga-Lopez, M. Kuznetsov, D. Mart'ınez-Ruiz et al., Unexpected Propagation of Ultra-Lean Hydrogen Flames in Narrow Gaps, Phys.Rev.Lett. 124, 174501 (2020).
  25. I. Brailovsky and G. I. Sivashinsky, On Stationary and Travelling Flame Balls, Combust. Flame 110, 524 (1997).
  26. S. Minaev, L. Kagan, G. Joulin et al., On Self-Propagating Flame Balls, Combust.Theory Model. 5, 609 (2001).
  27. I.A. Kirillov, Physics-Based Approach for Reduction Uncertainties in Concentration Limits of "Slowto-Fast" Flame Transition in Hydrogen-Air Gas Mixtures, in Technical Meeting on Hydrogen Management in Severe Accidents in VIC, Vienna, Austria, 25-28 September (2018), p. 259.
  28. А.С. Мелихов, И.А. Кириллов, В.П. Денисенко, Устройство для определения концентрационных пределов распространения пламени по газовым смесям в условиях, соответствующих невесомости, Патент RU 2702422 C1, Дата подачи заявки: 11.05.2018, Опубликовано: 08.10.2019.
  29. I.A. Kirillov, On Flame Ball-to-Deflagration Transition in Hydrogen-Air Mixtures, in Proc. ICHS-2021 (2021), p. 134.
  30. V.P. Denisenko, S. S. Kingsep, I.A. Kirillov et al., Critical Morphological Phenomena During Ultra-Lean Hydrogen-Air Combustion in Closed Horizontal Hele-Shaw Cell, in Proc. ICHS-2021 (2021), p. 128.
  31. A. Dom'ınguez-Gonz'alez, D. Mart'ınez-Ruiz, and M. S'anchez-Sanz, Stable Circular and Double-Cell Lean Hydrogen-Air Premixed Flames in Quasi Two-Dimensional Channels, Proc.Combust. Inst. (2022).
  32. Ю.А. Гостинцев, А.Г. Истратов, Н.И. Кидин и др. Автотурбулизация газовых пламен. Теоретические трактовки, ТВТ 37, 633 (1999).
  33. ImageJ, Image Processing and Analysis in Java, Version: 1.53t, URL: https://imagej.net/ij/.
  34. В. Е. Борисов, С. Е. Якуш, Численное моделирование распространения метанового пламени в зазоре между параллельными пластинами, Препринт №004 ИПМ им. М. В. Келдыша (2019).
  35. J. Huo, H. Su, L. Jiang et al., The Effect of Gap Width on Premixed Flame Propagation in Non-Adiabatic Closed Hele-Shaw Cells, Combust. Sci. Technol. 194, 2793 (2021).
  36. S. Diao, X. Wen, Z. Guo et al., Flame Propagation Characteristics of Syngas-Air in the Hele-Shaw Duct with Different Equivalence Ratio and Ignition Positions, ACS Omega 7, 20118 (2022).
  37. G. Gu, J. Huang, W. Han et al., Propagation of Hydrogen-Oxygen Flames in Hele-Shaw Cells, Int. J. Hydrog.Energy 46, 12009 (2021).
  38. P.V. Moskalev, V.P. Denisenko, and I.A. Kirillov, Scaling Laws for Velocity Dynamics of the Ultra-Lean Hydrogen-Air Flames Expanding in Horizontal Cylindrical Hele-Shaw Cell, in Proc. ICDERS-2022 (2022), p. 221.

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах