Analysis of the process e+e- → h0a0 in ihdm in the presence of a linearly polarized laser field

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We consider the process of neutral Higgs production from e+e- annihilation in Inert Higgs Doublet Model (IHDM) in the absence and presence of an external eld. The latter is assumed to be a plane and monochro-matic wave with linear polarization. In the theoretical framework, we present the analytic calculation of the lowest order di erential cross section by using the scattering matrix approach and Dirac-Volkov formalism for charged incident particles. The total cross section is computed by performing a numerical integration of the di erential cross section over the solid angle. The results obtained are analyzed and discussed for di erent centre of mass energies and laser parameters. We found that inserting a laser wave with linear polarization is a suitable mechanism to enhance the total cross-section of the process. Indeed, the probability of the process to occur increases with the presence of a linearly polarized laser eld, especially with low frequency and high strength.

Об авторах

M. Ouhammou

Email: jetp@kapitza.ras.ru

M. Ouali

Email: jetp@kapitza.ras.ru

S. Taj

Email: jetp@kapitza.ras.ru

R. Benbrik

Email: jetp@kapitza.ras.ru

B. Manaut

Автор, ответственный за переписку.
Email: jetp@kapitza.ras.ru

Список литературы

  1. P. Francken, Y. Attaourti, and C. J. Joachain, Phys. Rev. A 38, 1785 (1988).
  2. A. V. Andreev, R. V. Volkov, V. M. Gordienko et al., J. Exp. Theor. Phys. 91, 1163 (2000); https://doi.org/10.1134/1.1342882
  3. N. B. Narozhny and M.S. Fofanov, J. Exp. Theor. Phys. 90, 415 (2000); https://doi.org/10.1134/1.559121
  4. Y. Attaourti, B. Manaut, and A. Makhoute, Phys. Rev. A 69, 063407 (2004).
  5. M. Ouali, M. Ouhammou, Y. Mekaoui, S. Taj, and B. Manaut, Chin. J. Phys. 77, 1182 (2022).
  6. M. Ouali et al., Laser Phys. 32, 106002 (2022); https://doi.org/10.1088/1555-6611/ac8fe8
  7. M. Ouali et al., Laser Phys. 33, 016002 (2023); https://doi.org/10.1088/1555-6611/aca4c9
  8. M. Ouhammou et al., Laser Phys. Lett. 18, 076002 (2021); https://doi.org/10.1088/1612-202X/ac0919 [arXiv:2104.11155 [hep-ph]].
  9. S. J. Müller, C. H. Keitel, and C. Müller, Phys. Rev. D 90, 094008 (2014).
  10. S. J. Müller, C. H. Keitel, and C. Müller, Phys. Lett. B 730, 161 (2014).
  11. M. Ouhammou, M. Ouali, S. Taj, and B. Manaut, Chin. J. Phys 77, 826 (2022); https://doi.org/10.1016/j.cjph.2021.09.012
  12. M. Ouali, M. Ouhammou, S. Taj, R. Benbrik, and B. Manaut, Phys. Lett. B 823, 136761 (2021).
  13. M. Ouhammou, M. Ouali, S. Taj, R. Benbrik, B. Manaut, and E. Hrour, Laser Phys. Lett. 19 116002 (2022).
  14. H. Abouabid, A. Arhrib, R. Benbrik et al., J. High Energ. Phys. 100 (2021); https://doi.org/10.1007/JHEP05(2021)100
  15. W. Greiner and B. Mueller, Gauge Theory of Weak Interactions, 3rd ed., Springer, Berlin (2000).
  16. D. M. Volkov, "Uber eine Klasse von Losungen der Diracschen Gleichung", Z. Phys. 94, 250 (1935); https://doi.org/10.1007/BF01331022.
  17. R. Mertig, M. Bohm, and A. Denner, Comput. Phys.Commun. 64, 345 (1991); https://doi.org/10.1016/0010-4655(91)90130-D
  18. V. Shtabovenko, R. Mertig, and F. Orellana, Comput. Phys.Commun. 207, 432 (2016); https://doi.org/10.1016/j.cpc.2016.06.008 [arXiv:1601.01167 [hep-ph]].
  19. P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
  20. A. Belyaev, N. D. Christensen, and A. Pukhov, Comput. Phys.Commun. 184, 1729 (2013); https://doi.org/10.1016/j.cpc.2013.01.014 [arXiv:1207.6082]
  21. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, JHEP 07, 079 (2014); https://doi.org/10.1007/JHEP07(2014)079

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах