Analysis of the Result of the Neutrino-4 Experiment Together with Other Experiments on the Search for Sterile Neutrinos within the 3 + 1 Neutrino Model
- Authors: Serebrov A.P.1, Samoylov R.M.1, Chaykovskiy M.E.1
-
Affiliations:
- Petersburg Nuclear Physics Institute, named by B.P. Konstantinov of National Research Centre Kurchatov Institute
- Issue: Vol 164, No 1 (2023)
- Pages: 66-83
- Section: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/144765
- DOI: https://doi.org/10.31857/S0044451023070064
- EDN: https://elibrary.ru/GEIMEM
- ID: 144765
Cite item
Abstract
The correspondence of the results obtained in the Neutrino-4 experiment with the results of the NEOS, DANSS, STEREO, and PROSPECT experiments at reactors, the MiniBooNE, LSND, and MicroBoone experiments at accelerators, and the IceCube and BEST experiments with a 51Cr neutrino source is analyzed. The agreement between the results of the Neutrino-4 experiment, the BEST experiment, and the gallium anomaly on the mixing angle is discussed. The discrepancy between the results of the listed direct experiments with the results of the reactor anomaly, as well as with constraints from solar and cosmological data, is discussed. It is shown that the results of these direct experiments on the search for sterile neutrinos and the IceCube experiment do not contradict the Neutrino-4 experiment within the 3 + 1 neutrino model within 3σ contours of experimental errors. The sterile neutrino parameters from the Neutrino-4 and BEST experiments make it possible to estimate the sterile neutrino mass as m4 = (2.70 ± 0.22) eV and the effective mass of the electron neutrino as
About the authors
A. P. Serebrov
Petersburg Nuclear Physics Institute, named by B.P. Konstantinov of National Research Centre Kurchatov Institute
Email: fomin_ak@pnpi.nrcki.ru
Leningrad oblast, 188300, Gatchina, Russia
R. M. Samoylov
Petersburg Nuclear Physics Institute, named by B.P. Konstantinov of National Research Centre Kurchatov Institute
Email: fomin_ak@pnpi.nrcki.ru
Leningrad oblast, 188300, Gatchina, Russia
M. E. Chaykovskiy
Petersburg Nuclear Physics Institute, named by B.P. Konstantinov of National Research Centre Kurchatov Institute
Author for correspondence.
Email: fomin_ak@pnpi.nrcki.ru
Leningrad oblast, 188300, Gatchina, Russia
References
- R. L. Workman et al., Particle Data Group, Progress of Theoretical and Experimental Physics, 2022, 083C01 (2022). https://doi.org/10.1093/ptep/ptac097
- A. Aguilar et al., LSND Collaboration, Phys. Rev. D 64, 112007 (2001); [hep-ex/0104049]; https://doi.org/10.1103/PhysRevD.64.112007
- A. A. Aguilar-Arevalo et al., MiniBooNE Collaboration, Phys. Rev. Lett. 121, 221801 (2018); https://doi.org/10.1103/PhysRevLett.121.221801
- G. Mention, M. Fechner, T. Lasserre, T. Mueller, D. Lhuillier, M. Cribier et al., The Reactor Antineutrino Anomaly, Phys. Rev. D 83, 073006 (2011); https://doi.org/10.1103/PhysRevD.83.073006
- C. Giunti and T. Lasserre, eV-scale Sterile Neutrinos, Annual Review of Nuclear and Particle Science, 69, 163 (2019); https://doi.org/10.1146/annurevnucl-101918-023755
- W. Hampel et al., GALLEX Collaboration, Phys. Lett. B 420, 114 (1998); https://doi.org/10.1016/S0370-2693(97)01562-1
- J. Abdurashitov et al., SAGE Collaboration, Phys. Rev. C 59, 2246 (1999); https://doi.org/10.1103/PhysRevC.59.2246
- V. Barinov, B. Cleveland, V. Gavrin, D. Gorbunov, and T. Ibragimova, Phys. Rev. D 97, 073001 (2018); https://doi.org/10.1103/PhysRevD.97.073001
- S. Gariazzo, P. F. de Salas, and S. Pastor, JCAP 07, 014 (2019).
- B. Dasgupta and J. Kopp, Phys. Rev. Lett. 112, 031803 (2014).
- A. Serebrov and R. Samoilov, JETP Lett 112 4, 199 (2020); https://doi.org/10.1134/S0021364020160122
- A. P. Serebrov et al., Neutrino-4 Collaboration, Phys. Rev. D 104, 032003; https://doi.org/10.1103/PhysRevD.104.032003
- V. V. Barinov et al., BEST Collaboration, Phys. Rev. C 105, 065502 (2022); https://doi.org/10.1103/PhysRevC.105.065502
- V. Barinov, V. Gavrin, V. Gorbachev, D. Gorbunov, and T. Ibragimova, Phys. Rev. D 99, 111702 (2019); https://doi.org/10.1103/PhysRevD.99.111702
- V. Barinov and D. Gorbunov, Phys. Rev. D 105, L051703 (2022); https://doi.org/10.1103/PhysRevD.105.L051703
- K. N. Abazajian et. al., Light Sterile Neutrinos: A White Paper, arXiv:1204.5379v1
- C. Giunti, Y. F. Li, C. A. Ternes, and Z. Xin, Phys. Lett. B 829, 137054 (2022).
- K. Goldhagen, M. Maltoni, S. Reichard, and Thomas Schwetz, Eur. Phys. J. C 82, 116 (2022); https://doi.org/10.1140/epjc/s10052-022-10052-2
- F. P. An et al., PROSPECT, Daya Bay collaborations, Phys. Rev. Lett. 128, 081801 (2022); https://doi.org/10.1103/PhysRevLett.128.081801
- D. S. Gorbunov, V. A. Rubakov, Introduction to the Theory of the Early Universe: Hot Big Bang Theory, 2nd edition, New Jersey: World Scientific (2017); https://doi.org/10.1142/7874
- I. Alekseev et. al., DANSS Collaboration, Phys. Lett. B 787, 56 (2018); https://doi.org/10.1016/j.physletb.2018.10.038.
- Z. Atif et al., The RENO and NEOS Collaborations, Search for Sterile Neutrino Oscillation Using RENO and NEOS Data, Phys. Rev. D 105, L111101 (2022); https://doi.org/10.1103/PhysRevD.105.L111101
- M. Andriamirado et. al., PROSPECT Collaboration, Phys. Rev. D 103, 032001 (2021); https://doi.org/10.1103/PhysRevD.103.032001
- H. Almaz'an et. al., STEREO Collaboration, Phys. Rev. D 102, 052002 (2020); https://doi.org/10.1103/PhysRevD.102.052002
- M. Licciardi, Experimental results with reactors, The XXX International Conference on Neutrino Physics and Astrophysics (Neutrino 2022), https://indico.kps.or.kr/event/30/contributions/850/attachments/143/309/Slide_Matthieu%20Licciardi.pdf
- M. Aker et al., KATRIN Collaboration, Phys. Rev. Lett. 126, 091803 (2021); https://doi.org/10.1103/PhysRevLett.126.091803
- M. Aker et al., The KATRIN Collaboration, Nat. Phys. 18, 160-166 (2022); https://doi.org/10.1038/s41567-021-01463-1
- M. Agostini et al., GERDA Collaboration, Phys. Rev. Lett. 125, 252502 (2020); https://doi.org/10.1103/PhysRevLett.125.252502
- K. Abe et al., T2K Collaboration, Phys. Rev. D 91, 051102(R) (2015); https://doi.org/10.1103/PhysRevD.91.051102
- M. G. Aartsen et al., IceCube Collaboration, Phys. Rev. Lett. 125, 141801; https://doi.org/10.1103/PhysRevLett.125.141801
- M. G. Aartsen et al., IceCube Collaboration, Phys. Rev. D 102, 052009; https://doi.org/10.1103/PhysRevD.102.052009
- M. Dentler, 'A. Hern'andez-Cabezudo, J. Kopp et al., J. High Energ. Phys. 2018, 10, (2018).
- C. A. Arg�uelles et al., Phys. Rev. Lett. 128, 241802 (2022); https://doi.org/10.1103/PhysRevLett.128.241802
- S. Haystotz, P. F. de Salas, S. Gariazzo, M. Gerbino, M. Lattanzi, S. Vagnozzi, K. Freese, and S. Pastor, Phys. Rev. D 104, 123524 (2021); https://doi.org/10.1103/PhysRevD.104.123524
- A. P. Serebrov, R. M. Samoilov, M. E. Chaikovskii, and O.M. Zherebtsov, JETP Letters 116, 669 (2022); https://doi.org/10.1134/S002136402260224X
- C. Rubbia, XIX International Workshop on Neutrino Telescopes, (Online - 18-26 February 2021); https://agenda.infn.it/event/24250/timetable/#20210218.detailed
- R. Samoilov, Neutrino-4 Collaboration, LXX International Conference NUCLEUS - 2020. Nuclear Physics and Elementary Particle Physics; https://indico.cern.ch/event/839985/contributions/4060591/attachments/2124912/3577374/Samoilov_neutrino-4_nucleus.pdf
Supplementary files
