QuEChERS Extraction of PAHs from Various Soils and Sediments Followed by Chromatographic Determination

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We studied the features of PAHs extraction by QuEChERS in the sample preparation of soils and bottom sediments of various compositions followed their determination by gas chromatography–mass-spectrometry. The test samples were soils of sandy, loamy sand, loamy, and clayey types and bottom sediments of loamy sand type. The mineralogical composition and organic matter content of the samples were used to predict how PAHs were retained by the soils and sediments. The impact of ultrasonic treatment on analyte extraction with subsequent identification by chromatography was assessed. No ultrasonic treatment was required to extract and determine all PAHs (up to 100%) in sandy and loamy sand soils and low-molecular-weight PAHs in all test samples. The QuEChERS extraction and determination of high-molecular-weight PAHs in clay type soil samples and loamy sand bottom sediments required a 10-min ultrasonic treatment, while the recoveries of analytes were higher than 87 and 90%, respectively. The analysis of a loamy soil sample with a high organic matter content was the most challenging. To extract over 70% of high-molecular-weight PAHs from a sample of this type using the QuEChERS technique, the binary acetonitrile–acetone (1 : 1) extractant rather than conventional acetonitrile was used with the simultaneous 15-min ultrasonic treatment.

Авторлар туралы

Z. Temerdashev

Kuban State University

Email: TemZA@kubsu.ru
350040, Krasnodar, Russia

S. Ovsepyan

Kuban State University

Email: TemZA@kubsu.ru
350040, Krasnodar, Russia

T. Musorina

Kuban State University

Email: TemZA@kubsu.ru
350040, Krasnodar, Russia

L. Vasileva

Kuban State University

Email: TemZA@kubsu.ru
350040, Krasnodar, Russia

A. Vasilev

Kuban State University

Email: TemZA@kubsu.ru
350040, Krasnodar, Russia

I. Korpakova

Kuban State University

Хат алмасуға жауапты Автор.
Email: TemZA@kubsu.ru
350040, Krasnodar, Russia

Әдебиет тізімі

  1. Johnsen A.R., Wick L.Y., Harms H. Principles of microbial PAH-degradation in soil // Environ. Pollut. 2005. V.133. № 1. P. 71. https://doi.org/10.1016/j.envpol.2004.04.015
  2. Семенов В.М., Когут Б.М. Почвенное органическое вещество. М.: ГЕОС, 2015. 233 с.
  3. Chefetz B., Xing B., Relative role of aliphatic and aromatic moieties as sorption domains for organic compounds: A review // Environ. Sci. Technol. 2009. V. 43. № 6. P. 1680. https://doi.org/10.1021/es803149u
  4. Chen W., Wang H., Gao Q., Chen Y., Li S., Yang Y., Werner D., Tao Sh., Wang X., Association of 16 priority polycyclic aromatic hydrocarbons with humic acid and humin fractions in a peat soil and implications for their long-term retention // Environ. Pollut. 2017. V. 230. P. 882. https://doi.org/10.1016/j.envpol.2017.07.038
  5. Lu Z., Zeng F., Xue N., Li F. Occurrence and distribution of polycyclic aromatic hydrocarbons in organo-mineral particles of alluvial sandy soil profiles at a petroleum-contaminated site // Sci. Total Environ. 2012. V. 433. P. 50. https://doi.org/10.1016/j.scitotenv.2012.06.036
  6. Saeedi M., Li L.Y., Grace J.R. Efect of organic matter and selected heavy metals on sorption of acenaphthene, fuorene and fuoranthene onto various clays and clay minerals // Environ. Earth Sci. 2018. V. 77. № 305. P. 1. https://doi.org/10.1007/s12665-018-7489-0
  7. Zhu D., Herbert B.E., Schlautman M.A., Carraway E.R., Hur J. Cation–π Bonding: A new perspective on the sorption of polycyclic aromatic hydrocarbons to mineral surfaces // J. Environ. Qual. 2004. V. 33. P. 1322. https://doi.org/10.2134/jeq2004.1322
  8. Müller S., Totsche K.U., Kögel-Knabner I. Sorption of polycyclic aromatic hydrocarbons to mineral surfaces // Eur. J. Soil Sci. 2007. V. 58. № 4. P. 918. https://doi.org/10.1111/j.1365-2389.2007.00930.x
  9. Wang L., Niu J., Yang Z., Shen Z., Wang J. Effects of carbonate and organic matter on sorption and desorption behavior of polycyclic aromatic hydrocarbons in the sediments from Yangtze River // J. Hazard. Mater. 2008. V. 154. P. 811. https://doi.org/10.1016/j.jhazmat.2007.10.096
  10. Lau E.V., Gan S., Ng H.K. Extraction techniques for polycyclic aromatic hydrocarbons in soils // Int. J. Anal. Chem. 2010. V. 2010. № 398381. https://doi.org/10.1155/2010/398381
  11. Hawthorne S.B., Grabanski C.B., Martin E., Miller D.J. Comparisons of Soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids: Recovery, selectivity and effects on sample matrix // J. Chromatogr. A. 2000. V. 892. P. 421. https://doi.org/10.1016/s0021-9673(00)00091-1
  12. Ling W., Rui S., Yongxin L., Sun C. Sample preparation and analytical methods for polycyclic aromatic hydrocarbons in sediment // Trends Environ. Anal. Chem. 2019. V. 24. № e00074. https://doi.org/10.1016/j.teac.2019.e00074
  13. Темердашев З.А., Мусорина Т.Н., Червонная Т.А., Арутюнян Ж.В. Возможности и ограничения методов твердофазной и жидкостной экстракции при определении полициклических ароматических углеводородов в объектах окружающей среды // Журн. аналит. химии. 2021. Т. 76. № 12. С. 1059. https://doi.org/10.31857/S0044450221120136 (Temerdashev Z.A., Musorina T.N., Chervonnaya T.A., Arutyunyan Z.V. Possibilities and limitations of solid-phase and liquid extraction for the determination of polycyclic aromatic hydrocarbons in environmental samples // J. Anal. Chem. 2021. V. 76. № 12. P. 1357. )10.31857/S0044450221120136
  14. Федотов П.С., Малофеева Г.И., Савонина Е.Ю., Спиваков Б.Я. Твердофазная экстракция органических веществ: нетрадиционные методы и подходы // Журн. аналит. химии. 2019. Т. 74. № 3. С. 163. https://doi.org/10.1134/S0044450219030046 (Fedotov P.S., Malofeeva G.I., Savonina E.Y., Spivakov B.Y. Solid-phase extraction of organic substances: Unconventional methods and approaches // J. Anal. Chem. 2019. V. 74. № 3. P. 205.) https://doi.org/10.1134/S1061934819030043
  15. Portet-Koltalo F., Tian Y., Berger-Brito I., Benamar A., Boulang’e-Lecomte C., Machour N. Determination of multi-class polyaromatic compounds in sediments by a simple modified matrix solid phase dispersive extraction // Talanta. 2021. V. 221. № 121601. https://doi.org/10.1016/j.talanta.2020.121601
  16. Santana-Mayor A., Socas-Rodríguez B., Herrera-Herrera A.V., Rodríguez-Delgado M.A. Current trends in QuEChERS method. A versatile procedure for food. environmental and biological analysis // Trends Anal. Chem. 2019. V. 116. P. 214. https://doi.org/10.1016/j.trac.2019.04.018
  17. Perestrelo R., Silva P., Porto-Figueira P., Pereira J.A.M., Silva C., Medina S., Câmara J.S. QuEChERS – fundamentals, relevant improvements, applications and future trends // Anal. Chim. Acta. 2019. V. 1070. P. 1. https://doi.org/10.1016/j.aca.2019.02.036
  18. Темердашев З.А., Мусорина Т.Н., Овсепян С.К., Корпакова И.Г. Хромато-масс-спектрометрическое определение полициклических ароматических углеводородов в почвах и донных отложениях с пробоподготовкой по технике QuEChERS // Журн. аналит. химии. 2022. Т. 77. № 5. С. 462. https://doi.org/10.31857/s0044450222050164 (Temerdashev Z.A., Musorina T.N., Ovsepyan S.K., Korpakova I.G. Determination of polycyclic aromatic hydrocarbons in soils and bottom sediments by gas chromatography–mass spectrometry with QuEChERS sample preparation // J. Anal. Chem. 2022. V. 77. № 5. P. 595. )10.31857/s0044450222050164
  19. Huang Y., Wei J., Song J., Chen M., Luo Y. Determination of low levels of polycyclic aromatic hydrocarbons in soil by high performance liquid chromatography with tandem fluorescence and diode-array detectors // Chemosphere. 2013. V. 92. P. 1010. https://doi.org/10.1016/j.chemosphere.2013.03.035
  20. Manousi N., Zachariadis G.A. Recent advances in the extraction of polycyclic aromatic hydrocarbons from environmental samples // Molecules. 2020. V. 25. № 2182. https://doi.org/10.3390/molecules25092182
  21. Gimeno R.A., Altelaar A.F.M., Marcé R.M., Borrull F. Determination of polycyclic aromatic hydrocarbons and polycylic aromatic sulfur heterocycles by highperformance liquid chromatography with fluorescence and atmospheric pressure chemical ionization mass spectrometry detection in seawater and sediment samples // J. Chromatogr. A. 2002. V. 958. P. 141. https://doi.org/10.1016/s0021-9673(02)00386-2
  22. Yamada T.M., Souza D.A., Morais C.R., Mozeto A.A. Validation of a method for the analysis of PAHs in bulk lake sediments using GC-MS // J. Chromatogr. Sci. 2009. V. 47. № 9. P. 794. https://doi.org/10.1093/chromsci/47.9.794
  23. Темердашев З.А., Мусоринa Т.Н., Червонная Т.А. Хромато-масс-спектрометрическое определение полициклических ароматических углеводородов в почвах и донных отложениях с применением техники дисперсионной жидкостно-жидкостной микроэкстракции // Журн. аналит. химии. 2020. Т. 75. С. 702. https://doi.org/10.31857/s0044450220080150 (Temerdashev Z.A., Musorina T.N., Chervonnaya T.A. Determination of polycyclic aromatic hydrocarbons in soil and bottom sediments by gas chromatography–mass spectrometry using dispersive liquid–liquid microextraction // J. Anal. Chem. 2020. V. 75. № 8. P. 1000. )10.31857/s0044450220080150
  24. ГОСТ 26213-2021 Почвы. Методы определения органического вещества. М.: ФГБУ “РСТ”, 2021. 11 с.
  25. ГОСТ 12536-2014 Грунты. Методы лабораторного определения гранулометрического (зернового) и микроагрегатного состава. М.: Стандартинформ, 2019. 19 с.
  26. ГОСТ 5180-2015 Грунты. Методы лабораторного определения физических характеристик. М.: Стандартинформ, 2016. 21 с.
  27. ГОСТ 33850-2016 Почвы. Определение химического состава методом рентгенофлуоресцентной спектрометрии. М.: Стандартинформ, 2019. 16 с.
  28. ГОСТ 21216-2014 Сырье глинистое. Методы испытаний. М.: Стандартинформ, 2015. 43 с.
  29. Белицина Г.Д., Васильевская В.Д., Гришина Л.А. Почвоведение. Ч. 1. Почва и почвообразование. М.: Высшая школа, 1988. 400 с.
  30. USS Working Group WRB: World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports. FAO, Rome, 2015. 203 p.
  31. Hwang S., Ramirez N., Cutright T.J., Ju L.-K. The role of soil properties in pyrene sorption and desorption // Water Air Soil Pollut. 2003. V. 143. P. 65. https://doi.org/10.1023/A:1022863015709
  32. Földvári M. Handbook of Thermogravimetric System of Minerals and Its Use in Geological Practice. Budapest, 2011. 180 p.
  33. Neilson A.H. The Handbook of Environmental Chemistry V. 3 Part I. PAHs and Related Compounds. Berlin Heidelberg: Springer-Verlag, 1998. 385 p.
  34. Mackay D., Shiu W.Y., Ma K.C., Lee. S.C. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals. CRC Press, 2006. 840 p.
  35. Kim K.-H., Jahan S.A., Kabir E., Brown R.J.C. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects // Environ. Int. 2013. V. 60. P. 71.
  36. Baek S.O., Field R.A., Goldstone M.E., Kirk P.W., Lester J.N., Perry R. A review of atmospheric polycyclic aromatic hydrocarbons: Sources, fate and behavior // Water Air Soil Pollut. 1991. V. 60. P. 279. https://doi.org/10.1007/BF00282628
  37. Purcaro G., Moret S., Conte L.S. Polycyclic aromatic hydrocarbons / Encyclopedia of Food and Health / Eds. Caballero B., Finglas P., Toldrá F. Elsevier Ltd., 2016. P. 406. https://doi.org/10.1016/b978-0-12-384947-2.00550-x
  38. Voutsas E. Estimation of the Volatilization of Organic Chemicals from Soil. Thermodynamics, Solubility and Environmental Issues. Elsevier B.V., 2007. P. 205. https://doi.org/10.1016/b978-044452707-3/50013-6
  39. Delle Site A. Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review // J. Phys. Chem. Ref. 2001. V. 30. № 1. P. 187. https://doi.org/10.1063/1.1347984
  40. Nanuam J., Zuddas P., Sawangwong P., Pachana K. Modeling of PAHs adsorption on Thai clay minerals under seawater solution conditions // Procedia Earth Planet. Sci. 2013. V. 7. P. 607. https://doi.org/10.1016/j.proeps.2013.03.004
  41. Zemanek J. Low-resistivity hydrocarbon-bearing sand reservoirs // SPE Form Eval. 1989. V. 4. P. 515. https://doi.org/10.2118/15713-pa
  42. Пиковский Ю.И., Коротков Л.А., Смирнова М.А., Ковач Р.Г. Лабораторно-аналитические методы при определении углеводородного состояния почв (обзор) // Почвоведение. 2017. № 10. С. 1165. https://doi.org/10.7868/S0032180X17100070
  43. Lau E.V., Gan S., Ng H.K. Extraction techniques for polycyclic aromatic hydrocarbons in soils // Int. J. Anal. Chem. 2010. V. 2010. № 398381. https://doi.org/10.1155/2010/398381
  44. Чекмарев А.С., Скворцов А.В., Сулейманова А.З., Хацринов А.И., Байгузин Ф.А., Петухова Е.А. Ультразвуковая обработка глинистого сырья // Вестн. Казанского технолог. ун-та. 2010. № 8. С. 277.

© З.А. Темердашев, С.К. Овсепян, Т.Н. Мусорина, Л.В. Васильева, А.М. Васильев, И.Г. Корпакова, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>