Preconcentration of quinolones on magnetic hypercrosslinked polystyrene before their determination by high-performance liquid chromatography in milk

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Magnetic hypercrosslinked polystyrene (MHCPS) is proposed for group sorption isolation and preconcentration of quinolones. The conditions for magnetic solid-phase extraction are selected: 25 mL of solution (pH 6), sorbent mass 20 mg, sorption time 20 min. The analytes have been desorbed with 2 mL of methanol. It is shown that the sorbent provides quantitative isolation of all 23 studied compounds not only from aqueous solutions, but also from milk, bypassing the deproteinization stage. The determination is carried out by HPLC-tandem mass spectrometry using matrix calibration. The detection and determination limits of quinolones are 0.012–0.12 and 0.04–0.4 μg/L, respectively, which are below their maximum residue levels in milk.

About the authors

Y. A. Kulinich

Lomonosov Moscow State University, Department of Chemistry

Email: nikatolm@mail.ru
Leninskie Gory 1, Moscow, Russia

I. D. Puryskin

Lomonosov Moscow State University, Department of Chemistry

Leninskie Gory 1, Moscow, Russia

V. V. Tolmacheva

Lomonosov Moscow State University, Department of Chemistry; Federal Center for Animal Health

Email: nikatolm@mail.ru
Leninskie Gory 1, Moscow, Russia; mkr. Yur’evets, Vladimir, Russia

A. O. Melekhin

Federal Center for Animal Health

mkr. Yur’evets, Vladimir, Russia

V. V. Apyari

Lomonosov Moscow State University, Department of Chemistry

Leninskie Gory 1, Moscow, Russia

S. G. Dmitrienko

Lomonosov Moscow State University, Department of Chemistry

Leninskie Gory 1, Moscow, Russia

References

  1. Timofeeva I., Barbayanov K., Kochetkova M., Yahaya N., Zain N.N.M., Bulatov A. Recent developments in sample pretreatment techniques for the determination of fluoroquinolones in foods // TRAC, Trend. Anal. Chem. 2024. V. 178. Article 117831.
  2. Li F., Wang M., Zhou J., Yang M., Wang T., Li L. Recent progress in the preconcentration of fluoroquinolones by magnetic nanomaterials: Synthesis, modification, mechanism and applications // J. Environ. Chem. Eng. 2024. V. 12. Article 112079.
  3. Zou M., Tian W., Zhao J., Chu M., Song T. Quinolone antibiotics in sewage treatment plants with activated sludge treatment processes: A review on source, concentration and removal // Process Saf. Environ. 2022. V. 160. P. 116.
  4. Shen M., Hu Y., Zhao K., Li C., Liu B., Li M., Lyu C., Sun L., Zhong S. Occurrence, bioaccumulation, metabolism and ecotoxicity of fluoroquinolones in the aquatic environment: A review // Toxics 2023. V. 11. Article 966.
  5. Liu Y., Luo Y., Li W., Xu X., Wang B., Xu X., Hussain D., Chen D. Current analytical strategies for the determination of quinolone residues in milk // Food Chem. 2024. V. 430. Article 137072.
  6. Технический регламент Таможенного союза ТР ТС 021/2011 “О безопасности пищевой продукции” (с изменениями на 22 апреля 2024 года).
  7. Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin.
  8. Van Doorslaer X., Dewulf J., Van Langenhove H., Demeestere K. Fluoroquinolone antibiotics: An emerging class of environmental micropollutants // Sci. Total Environ. 2014. V. 500–501. P. 250.
  9. Qiao L., Tao Y., Yao W., Zhao J., Yan Y. A magnetic ionic liquid based vortex-assisted dispersive liquid-liquid microextraction coupled with back-extraction for the enrichment of fluoroquinolone antibiotics // J. Pharm. Biomed. Anal. 2022. V. 219. Article 114903.
  10. Xu X., Gao J., Zhang Y., Zhang L. Tailored novel multifunctional benzyl-functionalized magnetic ionic liquid for rapid and efficient monitoring of trace fluoroquinolones in food samples // Food Chem. 2023. V. 404. Article 134654.
  11. Kurashov Y., Pochivalov A., Petrova A., Safonova E., Garmonov S., Bulatov A. Supramolecular solvents based on hydrophobic natural deep eutectic solvents and primary amines for preconcentration and determination of enrofloxacin in milk // Talanta 2024. V. 279. Article 126666.
  12. Timofeeva I., Stepanova K., Shishov A., Nugbienyo L., Moskvin L., Bulatov A. Fluoroquinolones extraction from meat samples based on deep eutectic solvent formation // J. Food Compos. Anal. 2020. V. 93. Article 103589.
  13. Ma W., Row K.H. pH-induced deep eutectic solvents based homogeneous liquid-liquid microextraction for the extraction of two antibiotics from environmental water // Microchem. J. 2021. V. 160. Article 105642.
  14. Pu X., Wang X., Liu Y., Di X. A novel deep eutectic solvent-based ultrasound-assisted dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography for the determination of quinolones in environmental water samples // Microchem. J. 2023. V. 195. Article 109374.
  15. Тимофеева И.И., Барбаянов К.А., Булатов А.В. Автоматизированная жидкостная микроэкстракция фторхинолонов для их последующего хроматографического определения // Журн. аналит. химии. 2023. Т. 78. № 2. С. 159. (Timofeeva I.I., Barbayanov K.A., Bulatov A.V. Automated liquid–liquid microextraction of fluoroquinolones for their subsequent chromatographic determination // J. Anal. Chem. 2023. V. 78. P. 207.)
  16. Zhang C., Wang H., Mu Y., Liu H. A method for simultaneously and accurately quantify seven quinolones in matrix reference materials by HPLC-MS // Microchem. J. 2024. V. 204. Article 110984.
  17. Liu C., Lin H., Yao J., Chen Y.-Q., Shi P.-Y., Song J., Mao R., Xiao Q.-W., Dai Q. Development of an enhanced quick, easy, cheap, effective, rugged, and safe method for determination of quinolone drug residues in quail eggs // Sep. Sci. Plus. 2024. V. 7. Article e202400219.
  18. Su L.-H., Qian H.-L., Yang C., Wang C., Wang Z., Yan X.-P. Surface imprinted-covalent organic frameworks for efficient solid-phase extraction of fluoroquinolones in food samples // J. Hazard. Mater. 2023. V. 459. Article 132031.
  19. Meng L.-S., Wang X.-L., Wang X., Ji L., Wang L.-L., Cai Y.-Q., Zhao R.-S. Hydroxyl-containing triazine-based conjugated microporous polymers for solid phase extraction of fluoroquinolone antibiotics in the environment and food samples // Food Chem. 2024. V. 447. Article 138867.
  20. Xiang Y., Yan X., Chen C., Guo Y., Liu H., Li Y., Wu D. Low flow-resistance solid phase extraction of fluoroquinolones in water and food samples by high-pressure wet spinning porous polyimide microfibers // J. Chromatogr. A. 2024. V. 1729. Article 465040.
  21. Hu H., Da X., Li Z., Li T., Zhang X., Bian T., Jin Y., Xu K., Guo Y. Determination and ecological risk assessment of quinolone antibiotics in drinking and environmental waters using fully automated disk-based SPE coupled with UPLC–MS/MS // Molecules 2024 V. 29. Article 4611.
  22. Liu Y., Chen Y., Zhu X., Zhao P., Ren W. Determination of quinolone antibiotics in surface water by MnFe2O4@TiO2 magnetic solid phase extraction-high performance liquid chromatography // Microchem. J. 2024. V. 204. Article 111090.
  23. Klongklaew P., Kanatharana P., Bunkoed O. Development of doubly porous composite adsorbent for the extraction of fluoroquinolones from food samples // Food Chem. 2020. V. 309. Article 125685.
  24. Lin S., Liang B., Zhao Z., Li Z., Deng K., He H., Liang S. Fabrication of a magnetic metal-organic framework/covalent organic framework composite for simultaneous magnetic solid-phase extraction of seventeen trace quinolones residues in meats // J. Chromatogr. A. 2023. V. 1709. Article 464403.
  25. Sun Y., Kuang J., Cheng Y., Lin C., Zhang H., Zhang M., Ning F., Hu P. Determination of trace fluoroquinolones in honey and milk based on cyclodextrin modified magnetic metal-organic frameworks solid phase extraction coupled with ultra-high performance liquid chromatography // J. Chromatogr. A. 2024. V. 1713. Article 464521.
  26. Tang F., Zou T., Wang Z., Zhang J. Fabrication of fluorinated triazine-based covalent organic frameworks for selective extraction of fluoroquinolone in milk // J. Chromatogr. A. 2024. V. 1730. Article 465078.
  27. Wen A., Li G., Wu D., Yu Y., Yang Y., Hu N., Wang H., Chen J., Wu Y. Sulphonate functionalized covalent organic framework-based magnetic sorbent for effective solid phase extraction and determination of fluoroquinolones // J. Chromatogr. A. 2020. V. 1612. Article 460651.
  28. Lin S., Lv Y., Zhu A., Su M., Li X., Liang S. Development of a NiFe2O4 covalent organic framework based magnetic solid-phase extraction approach for specific capture of quinolones in animal innards prior to UHPLC–Q–Orbitrap HRMS detection // Food Chem. 2024. V. 454. Article 139796.
  29. Ma W., Zhang H., Nie J., Qiang C., Li Z., Ma L., Wang K. Determination of 25 quinolones in water and milk by a magnetic sorbent Fe3O4@SiO2-HBTA-TTA-COF combining with UPLC-MS/MS // Microchem. J. 2025. V. 208. Article 112519.
  30. Дмитриенко С.Г., Тихомирова Т.И., Апяри В.В., Толмачева В.В., Кочук Е.В., Золотов Ю.А. Применение сверхсшитых полистиролов для концентрирования и разделения органических соединений и ионов элементов // Журн. аналит. химии. 2018. Т. 73. № 11. С. 830. (Dmitrienko S.G., Tikhomirova T.I., Apyari V.V., Tolmacheva V.V., Kochuk E.V., Zolotov Yu.A. Application of hypercrosslinked polystyrenes to the preconcentration and separation of organic compounds and ions of elements // J. Anal. Chem. 2018. V. 73. P. 1053.)
  31. Толмачева В.В., Апяри В.В., Ибрагимова Б.Н., Кочук Е.В., Дмитриенко С.Г., Золотов Ю.А. Полимерный магнитный сорбент на основе наночастиц Fe3O4 и сверхсшитого полистирола для концентрирования антибиотиков тетрациклинового ряда // Журн. аналит. химии. 2015. Т. 70. № 11. С. 1149. (Tolmacheva V.V., Apyari V.V., Ibragimova B.N., Kochuk E.V., Dmitrienko S.G., Zolotov Yu A. A polymeric magnetic adsorbent based on Fe3O4 nanoparticles and hypercrosslinked polystyrene for the preconcentration of tetracycline antibiotics // J. Anal. Chem. 2015. V. 70. № 11. P. 1313.)
  32. Tolmacheva V.V., Apyari V.V., Furletov A.A., Dmitrienko S.G., Zolotov Yu.A. Facile synthesis of magnetic hypercrosslinked polystyrene and its application in the magnetic solid-phase extraction of sulfonamides from water and milk samples before their HPLC determination // Talanta. 2016. V. 152. P. 203.
  33. Толмачева В.В., Апяри В.В., Ярыкин Д.И., Дмитриенко С.Г. Спектрофотометрическое определение суммарного содержания сульфаниламидов в молоке после их сорбционного выделения с помощью магнитного сверхсшитого полистирола // Журн. аналит. химии. 2016. Т. 71. № 8. С. 867. (Tolmacheva V.V., Apyari V.V., Yarykin D.I., Dmitrienko S.G. Spectrophotometric determination of the total concentration of sulfonamides in milk after adsorption separation using magnetic hypercrosslinked polystyrene // J. Anal. Chem. 2016. V. 71. № 8. P. 834.)
  34. Толмачева В.В., Савинова В.Ю., Гончаров Н.О., Дмитриенко С.Г., Апяри В.В., Чернавский П.А., Панкина Г.В. Сорбция амфениколов на магнитном сверхсшитом полистироле // Журн. физ. химии. 2022. Т. 96. № 6. С. 875. (Tolmacheva V.V., Savinova V.Yu., Goncharov N.O., Dmitrienko S.G., Apyari V.V., Chernavsky P.A., Pankina G.V. Sorption of amphenicols on magnetic hypercrosslinked polystyrene // Russ. J. Phys. Chem. A. 2022. V. 96. № 6. P. 1268.)
  35. Melekhin A.O., Tolmacheva V.V., Shubina E.G., Dmitrienko S.G., Apyari V.V., Grudev A.I. Determination of nitrofuran metabolites in honey using a new derivatization reagent, magnetic solid-phase extraction and LC–MS/MS // Talanta. 2021. V. 230. Article 122310.
  36. Melekhin A.O., Tolmacheva V.V., Goncharov N.O., Apyari V.V., Dmitrienko S.G., Shubina E.G., Grudev A.I. Multi-class, multi-residue determination of 132 veterinary drugs in milk by magnetic solid-phase extraction based on magnetic hypercrosslinked polystyrene prior to their determination by high-performance liquid chromatography –tandem mass spectrometry // Food Chem. 2022. V. 387. Article 132866.
  37. He X., Wang G.N., Yang K., Liu H.Z., Wu X.J., Wang J.P. Magnetic graphene dispersive solid phase extraction combining high performance liquid chromatography for determination of fluoroquinolones in foods // Food Chem. 2017. V. 221. P. 1226.
  38. Wei D., Guo M. Facile preparation of magnetic graphene oxide/nanoscale zerovalent iron adsorbent for magnetic solid-phase extraction of ultra-trace quinolones in milk samples // J. Sep. Sci. 2020. V. 43. P. 3093.
  39. Wang H., Liu Y., Wei S., Yao S., Zhang J., Huang H. Selective extraction and determination of fluoroquinolones in bovine milk samples with montmorillonite magnetic molecularly imprinted polymers and capillary electrophoresis // Anal. Bioanal. Chem. 2016. V. 408. P. 589.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».