Identification and adulteration of Salmoninae caviar by PCR, IR spectroscopy and digital colourimetry

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The possibility to identify and establish adulteration of salmon fish eggs in a simple and accessible way using PCR, Fourier transform infrared spectroscopy, digital colourometry and chemometric processing of analysis results has been shown. The PCR method was used to determine the species affiliation of Salmoninae caviar. Absence of Salmoninae DNA in the samples of caviar, as well as the presence of DNA of other fish, indicated the adulteration of caviar products. Fourier transform infrared spectroscopy in the near and middle regions allowed to distinguish between natural and imitated caviar after processing of diffuse reflectance spectra by principal component and hierarchical cluster analysis methods. The above methods were combined with a simpler and cheaper colourometric method of analysis. Handmade devices with LEDs emitting light in the UV and IR ranges were used. The analytical signal was recorded using smartphones via specialised applications. Chemometric processing of the spectral characteristics of the samples made it possible to distinguish natural caviar from imitated and structured caviar: in the principal component method and hierarchical cluster analysis, points from the analyzed samples were located in different quadrants and clusters.

About the authors

V. G. Amelin

The Russian State Center for Animal Feed and Drug Standardization and Quality; Vladimir State University named after Alexander and Nikolay Stoletovs

Email: amelinvg@mail.ru
Moscow, Russia; Vladimir, Russia

O. E. Emelyanov

Vladimir State University named after Alexander and Nikolay Stoletovs

Email: amelinvg@mail.ru
Vladimir, Russia

A. V. Tretyakov

The Russian State Center for Animal Feed and Drug Standardization and Quality

Email: amelinvg@mail.ru
Moscow, Russia

M. A. Gergel

The Russian State Center for Animal Feed and Drug Standardization and Quality

Email: amelinvg@mail.ru
Moscow, Russia

E. V. Zaitseva

The Russian State Center for Animal Feed and Drug Standardization and Quality

Author for correspondence.
Email: amelinvg@mail.ru
Moscow, Russia

References

  1. Лаврухина О.И. Современные методы выявления фальсификации мяса и мясной продукции (аналитический обзор) // Труды Федерального центра охраны здоровья животных. 2017. №. 15. С. 153.
  2. ГОСТ 18173-2004. Икра лососевая зернистая баночная. Технические условия. М.: Изд-во стандартов. 2004. 10 с.
  3. Ситникова Н.В. Идентификация и фальсификация икры в России // Ученые записки Санкт-Петербургского им. В.Б. Бобкова филиала Российской таможенной академии. 2007. № 2 (28). С. 84.
  4. Калюжная Т.В., Орлова Д.А., Родак Г.Н. Идентификация икры лососевых пород рыб с помощью полимеразной цепной реакции с наблюдением в реальном времени // Международный вестник ветеринарии. 2021. № 4. С. 88. https://doi.org/10.52419/issn2072-2419.2021.4.88
  5. Santiago-Felipe S., Tortajada-Genaro L.A., Pucha­des R., Maquieira A. Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis // Anal. Chim. Acta. 2014. V. 811. P. 81. https://doi.org/10.1016/j.aca.2013.12.017
  6. Taboada L., Sanchez A., Sotelo C.G. A new real-time PCR method for rapid and specific detection of ling (Molva molva) // Food Chem. 2017. V. 228. P. 469. https://doi.org/10.1016/j.foodchem.2017.01.117
  7. Абрамова Л.С., Козин А.В., Гусева Е.С. Проблема фальсификации зернистой икры лососевых рыб и пути решения // Пищевые системы. 2022. Т. 5. № 4. С. 319. https://doi.org/10.21323/2618-9771-2022-5-4-319-326
  8. Mazarakioti E.C., Zotos A., Thomatou A.A., Kontogeor­gos A., Patakas A., Ladavos A. Inductively coupled plasma-mass spectrometry (ICP-MS), a useful tool in authenticity of agricultural poducts’ and foods’ origin // Foods. 2022. V. 11. № 22. Article 3705. https://doi.org/10.3390/foods11223705
  9. https://doi.org/10.3390/foods11223705
  10. Третьяков А.В., Абраменкова О.И., Подколзин И.В., Соловьев А.И. Идентификация географической принадлежности мяса и икры методом химического фингерпринтинга // Ветеринария сегодня. 2012. № 2 (2). С. 39.
  11. Шаока З.А.Ч., Большаков Д.С., Амелин В.Г. Использование смартфона в химическом анализе // Журн. аналит. химии. 2023. Т. 78. № 4. С. 317. (Shogah Z.A.Ch., Bol'shakov D.S., Amelin V.G. Using a smartphone in chemical analysis // J. Anal. Chem. 2023. V. 78. №. 4. P. 317.) https://doi.org/10.31857/S0044450223030131
  12. Böck F.C., Helfer G.A., da Costa A.B., Dessuy M.B., Ferrao M.F. PhotoMetrix and colorimetric image analysis using smartphones // J. Chemometrics. 2020. V. 34. Article 12. https://doi.org/10.1002/cem.3251
  13. Helfer G.A., Magnus V.S., Böck F.C., Teichmann A., Ferrãoa M.F., da Costa A.B. PhotoMetrix: An application for univariate calibration and principal components analysis using colorimetry on mobile devices // J. Braz. Chem. Soc. 2017. V. 28. № 2. P. 328. https://doi.org/10.5935/0103-5053.20160182
  14. Johnson J.B., Walsh K.B., Naiker M., Ameer K. The use of infrared spectroscopy for the quantification of bioactive compounds in food: A Review // Molecules. 2023. V. 28. № 7. Article 3215. https://doi.org/10.3390/molecules28073215

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).