Identification and establishment of adulteration of starch and flour by digital colorometry and near-infrared Fourier spectroscopy
- Authors: Amelin V.G.1,2, Emelyanov О.E.2, Shaoka Z.C.1,2, Tretyakov A.V.1
-
Affiliations:
- Russian State Center for Animal Feed and Drug Standardization and Quality
- Vladimir State University
- Issue: Vol 79, No 11 (2024)
- Pages: 1154-1164
- Section: ORIGINAL ARTICLES
- Submitted: 02.04.2025
- Accepted: 02.04.2025
- URL: https://journals.rcsi.science/0044-4502/article/view/286069
- DOI: https://doi.org/10.31857/S0044450224110028
- EDN: https://elibrary.ru/sxhnqv
- ID: 286069
Cite item
Abstract
A colorometric device is proposed to identify and establish the falsification of various types of starch and flour by diffuse reflection of UV and IR radiation from LEDs. The color characteristics of the samples (values of RGB digital channels) were determined using the cameras of OnePlus 10 Pro and iPhone 14 smartphones with PhotoMetrix PRO®, ColorGrab, RGBer applications installed. IR spectra in the near infrared range (4000–10000 cm–1) were recorded using a Fourier transform IR spectrometer. To process the array of colorometric and spectral characteristics data, specialized software packages were used: TQ Analyst 9, The Unscrambler X, XLSTAT. The identification features were the location of clusters for certain types of starch and flour in the methods of main components and hierarchical cluster analysis. The optimal wavelengths for establishing qualitative falsification of the studied samples were determined: for starch, the simultaneous participation of all LEDs (365, 390, 850 and 880 nm), for flour, the use of LEDs with irradiation wavelengths of 365 and 390 nm. The assessment of qualitative falsification was carried out using graphs of the dependence of the F1 component on the mass fraction of the added foreign additive in starch or flour. The operability of the colorometric method was confirmed by the method of infrared spectroscopy with Fourier transform in the near field
About the authors
V. G. Amelin
Russian State Center for Animal Feed and Drug Standardization and Quality; Vladimir State University
Author for correspondence.
Email: amelinvg@mail.ru
Russian Federation, Moscow; Vladimir
О. E. Emelyanov
Vladimir State University
Email: amelinvg@mail.ru
Russian Federation, Vladimir
Z. A. Ch. Shaoka
Russian State Center for Animal Feed and Drug Standardization and Quality; Vladimir State University
Email: amelinvg@mail.ru
Russian Federation, Moscow; Vladimir
A. V. Tretyakov
Russian State Center for Animal Feed and Drug Standardization and Quality
Email: amelinvg@mail.ru
Russian Federation, Moscow
References
- ГОСТ 7698-93. Крахмал. Правила приемки и методы анализа. М.: Изд-во стандартов. 2001. 39 с.
- Jane J.-L., Kasemsuwan T., Leas S., Zobel H., Robyt J.F. Anthology of starch granule morphology by scanning electron microscopy // Starch – Stärke. 1994. V. 46. № 4. P. 121. https://doi.org/10.1002/star.19940460402
- Li L., Sai M., Jianxin C. Identification of starch granules using a two-step identification method // J. Archaeolog. Sci. 2014. V. 52. P. 421. https://doi.org/10.1016/j.jas.2014.09.008
- Podgorbunskikh E.M., Dome K.V., Buchtoyarov A.V., Bychkov A.L. X-ray diffraction for detecting starch adulteration and measuring the crystallinity indices of the polymorphic modifications of starch // Health, Food Biotechnol. 2022. V. 4. № 1. P. 6. https://doi.org/10.36107/hfb.2022.i1.s131
- Pastor K., Aćanski M., Vujić D. A review of adulteration versus authentication of flour / Flour and Breads and their Fortification in Health and Disease Prevention. Ch. 3. Elsevier Inc., 2019. P. 21. https://doi.org/10.1016/B978-0-12-814639-2.00003-4
- Zhang S., Liu S., Shen L., Chen S., He L., Liu A. Application of near-infrared spectroscopy for the nondestructive analysis of wheat flour: A review // Curr. Res. Food Sci. 2022. V. 5. P. 1305. https://doi.org/10.1016/j.crfs.2022.08.006
- Ndlovu P.F., Magwaza L., Tesfay S.Z., Mphahlele R.R. Rapid visible–near infrared (Vis–NIR) spectroscopic detection and quantification of unripe banana flour adulteration with wheat flour // J. Food. Sci. Technol. 2019. V. 56. № 12. P. 5484. https://doi.org/10.1007/s13197-019-04020-0
- Fu X., Chen J., Fu F., Wu C. Discrimination of talcum powder and benzoyl peroxide in wheat flour by near-infrared hyperspectral imaging // Biosyst. Eng. 2020. V. 190. P. 120. https://doi.org/10.1016/j.biosystemseng.2019.12.006
- Du Ch., Sun L., Bai H., Zhao Z., Li X., Gai Z. Quantitative detection of talcum powder in wheat flour based on near-infrared spectroscopy and hybrid feature selection // Infrared Phys. Technol. 2022. V. 123. Article 104185. https://doi.org/10.1016/j.infrared.2022.104185
- Wang D., Ma Z.H., Pan L.G., Han P., Zhao L., Wang J.H. Research on the quantitative determination of lime in wheat flour by near-infrared spectroscopy // Spectrosc. Spectr. Anal. 2013. V. 33. P. 69. https://doi.org/10.3964/j.issn.1000-0593(2013)01-0069-05
- Arslan F.N., Akin G., Elmas Ş.N.K., Üner B., Yilmaz I., Janssen H-G., Kenar A. FT-IR spectroscopy with chemometrics for rapid detection of wheat flour adulteration with barley flour // J. Consum. Prot. Food S. 2020. V. 15. № 3. P. 245. https://doi.org/10.1007/s00003-019-01267-9
- Ziegler J.U., Leitenberger M.C., Longin F.H., Würschum T., Reinhold C., Schweiggert R.M. Near-infrared reflectance spectroscopy for the rapid discrimination of kernels and flours of different wheat species // J. Food Compos. Anal. 2016. V. 51. P. 30. https://doi.org/10.1016/j.jfca.2016.06.005
- Verdú S., V´asquez F., Grau R., Ivorra E., S´anchez A.J., Barat J.M. Detection of adulterations with different grains in wheat products based on the hyperspectral image technique: The specific cases of flour and bread // Food Control. 2016. V. 62. P. 373. https://doi.org/10.1016/j.foodcont.2015.11.002
- Lohumi S., Lee S., Lee W-H., Kim M.S., Mo Ch., Bae H., Cho B-К. Detection of starch adulteration in onion powder by FT-NIR and FT-IR spectroscopy // J. Agric. Food Chem. 2014. V. 62. № 38. P. 9246. https://doi.org/10.1021/jf500574m
- Амелин В.Г., Шаока З.А.Ч., Большаков Д.С. Идентификация и аутентификация сухого коровьего молока с использованием смартфона и хемометрического анализа // Вестн. Моск. ун-та. Сер. 2. Химия. 2023. Т. 64. № 1. С. 49. (Amelin V.G., Shogah Z.A.Ch., Bolshakov D.S. Identification and authentication of cow milk powder using a smartphone and chemometric analysis // Moscow Univ. Chem. Bull. 2022. V. 77. Suppl. 1. P. 36. https://doi.org/10.3103/S0027131422070033)
- Böck F.C., Helfer G.A., da Costa A.B., Dessuy M.B., Ferrao M.F. PhotoMetrix and colorimetric image analysis using smartphones // J. Chemometrics. 2020. V. 34. Article 12. https://doi.org/10.1002/cem.3251
- Helfer G.A., Magnus V.S., Böck F.C., Teichmann A., Ferrãoa M.F., da Costa A.B. PhotoMetrix: An application for univariate calibration and principal components analysis using colorimetry on mobile devices // J. Braz. Chem. Soc. 2017. V. 28. № 2. P. 328. https://doi.org/10.5935/0103-5053.20160182
- Rateni G., Dario P., Cavallo F. Smartphone-based food diagnostic technologies: A review // Sensors. 2017. V. 17. P. 1453. https://doi.org/10.3390/s17061453
- Амелин В.Г., Шаока З.А.Ч., Третьяков А.В. Анализ молочной продукции: определение массовой доли молочного жира и выявление фальсификации смартфоном с приложением Photometrix PRO® // Журн. аналит. химии. 2024. Т. 79. № 1. С. 105. (Amelin V.G., Shogah Z.A.Ch., Tretyakov A.V. Analyzing dairy products: measuring milk fat mass fraction and detecting adulteration using the Photometrix PRO® smartphone app // J. Anal. Chem. 2024. V. 79. № 1. P. 50. https://doi.org/10.1134/S1061934824010039)
Supplementary files
