Neuro-fuzzy method of processing hydrochemical data for river flow

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Production and socio-environmental requirements for the quality of land waters have determined the need to create a network of hydrochemical observation posts, and the variability of controlled indicators – the need to perform routine chemical analytical studies. The standard (rigid) statistical methods of processing measurement results common in analytical chemistry, as a rule, underestimate the specifics of studying noisy (fuzzy) experimental data, which are the series of values of the impurity concentration of a river stream in space and time. It is shown that in this case, alternative soft computing tools designed to process exactly such data based on neuro-fuzzy hybrid algorithmic structures related to the ANFIS architecture are appropriate. The arrays of chemical analytical data on copper and zinc analyzed in this way on the Volga River, depending on water flow at different distances from the shore and depths, made it possible to identify the complex oscillatory behavior of concentrations of both substances in the water stream. It is concluded that the neuro-fuzzy scheme for processing monitoring results provides an opportunity for in-depth study of poorly understood processes of hydrochemical dynamics in systems far from thermodynamic equilibrium, which include natural watercourses.

About the authors

O. M. Rosenthal

Institute of Water Problems of the Russian Academy of Sciences

Author for correspondence.
Email: omro3@yandex.ru
Russian Federation, Moscow

V. Kh. Fedotov

Chuvash State University named after I.N. Ulyanov

Email: omro3@yandex.ru
Russian Federation, Cheboksary

References

  1. Золотов Ю.А. Основы аналитической химии. Кн. 1. Общие вопросы. М.: Высшая школа, 2002. 351 с.
  2. Tsakovski S.L., Venelinov T. Environmental analytical chemistry // Molecules. 2024. V. 29. № 2. P. 450. https://doi.org/10.3390/molecules29020450.
  3. Конференции “Эконалалитика” // Журн. аналит. химии. 2020. Т. 75. № 9. С. 855. https://doi.org/10.31857/S0044450220090200.
  4. Wilkinson K.J., Lead J.R. Environmental Colloids and Particles: Behaviour, Separation and Characterisation. San Francisco: John Wiley & Sons, 2007. 702 p.
  5. Шевцов М.Н. Водно-экологические проблемы и использование водных ресурсов. Хабаровск: Изд-во Тихоокеан. гос. ун-та, 2015. 197 с.
  6. Kailash B.G., Bisht P.S. The role of water resources in socio-economic development // Int. J. Res. Appl. Sci. Eng. Technol. 2017. V. 5. № 12. P. 1669.
  7. Malov A.I., Sidkina E.S., Ershova D.D., Cherkasova E.V., Druzhinin S.V. Time regularities of strontium concentration in drinking groundwater distant from the sea coast // Environ. Geochem. Health. 2023. V. 45. № 11. P. 8097. https://doi.org/10.1007/s10653-023-01710-9
  8. Wilcox В.Р., Seyfried M.S., Matison Т.Н. Searching for chaotic dynamics in Snowmelt runoff // Water Resour. 1991. V. 27. № 6. P. 1005. https://doi.org/10.1029/91WR00225.
  9. Швейкина В.И., Кожевникова И.А. Нелинейная модель колебаний речного стока с хаотическими режимами // Водное хозяйство России: проблемы, технологии, управление. 2012. № 6. С. 4.
  10. РД 52.24.634-2002. Руководящий документ. Методические указания. Уточнение местоположения створов (пунктов) наблюдений и режимов отбора проб на основе использования трассерных методов изучения гидродинамических характеристик водных объектов (утв. и введен в действие Росгидрометом 16.05.2002). 20 с.
  11. Розенталь О.М., Александровская Л.Н. Оценка степени соответствия воды нормативным требованиям // Водные ресурсы. 2018. Т. 45. № 3. С. 289. https://doi.org/10.7868/S0321059618030070
  12. (Rosental O.M., Aleksandrovskaya L.N. Assessment of the degree of compliance of water to regulatory requirements // Water Resour. 2018. V. 45. № 3. P. 379.
  13. https://doi.org/10.1134/S0097807818030132).
  14. Thomas L., Ferrari R. Friction, frontogenesis, and the stratification of the surface mixed layer // J. Phys. Oceanogr. 2008. V. 38. № 38. P. 2501.
  15. Чашечкин Ю.Д., Розенталь О.М. Структура речного потока и ее влияние на распределение загрязняющего воду вещества // Водные ресурсы. 2019. Т. 46. № 6. С. 582.
  16. https://doi.org/10.31857/S0321-0596466582-591 (Chashechkin Yu.D., Rozental O.M. River flow structure and its effect on pollutant distribution // Water Resour. 2019. V. 46. № 6. P. 910. https://doi.org/10.1134/S0097807819060022).
  17. РД 52.24.309-2011. Организация и проведение режимных наблюдений за состоянием и загрязнением поверхностных вод суши. Ростов-на-Дону, 2011. 109 с.
  18. ГОСТ 27384-2002. Вода. Нормы погрешности измерений показателей состава и свойств. М.: Стандартинформ, 2010.
  19. Розенталь О.М., Авербух А.И. Введение в квалиметрию воды // Водные ресурсы. 2013. Т. 40. № 4. С. 418. https://doi.org/10.7868/S0321059613040111 (Rozental O.M., Averbukh A.I. Introduction to water qualimetry // Water Resour. 2013. V. 40. P. 447. https://doi.org/10.1134/S0097807813040118)
  20. Кудинов Ю.И., Келина А.Ю., Кудинов И.Ю., Пащенко А.Ф., Пащенко Ф.Ф. Нечеткие модели и системы управления. М.: ЛЕНАНД, 2017. 328 с.
  21. Федотов В.Х. Мягкое описание фундаментальных законов природы и общества для экспертных систем // European Researcher (Европейский исследователь). 2012. № 2 (17). С. 110. EDN: OUINYP.
  22. Терано Т., Асаи К., Сугэно М. Прикладные нечеткие системы. М.: Мир, 1993. 368 p.
  23. Штовба С.Д. Проектирование нечетких систем средствами MATLAB. М.: Горячая линия-Телеком, 2007. 288 с.
  24. Леонов А.С. Решение некорректно поставленных обратных задач: очерк теории, практические алгоритмы и демонстрации в МАТЛАБ. М.: Либроком, 2015. 336 с.
  25. Kuhn K.M., Neubauer E., Hofmann T., von der Kammer F., Aiken G.R., Maurice P.A. Concentrations and distributions of metals associated with dissolved organic matter from the Suwannee River // Environ. Eng. Sci. 2015. V. 32. № 1. P. 54. https://doi.org/10.1089/ees.2014.0298
  26. Danilov-Danilyan V.I., Rosenthal O.M. Dynamic model of water quality evolution // J. Water Chem. Technol. 2022. V. 44. № 2. P. 132. https://doi.org/10.3103/S1063455X22020035

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».