Laser desorption/ionization of complex metal compounds with ditizone

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Complex compounds of Cu, Ag, Pd, Pt and Au with ditizone (diphenylthiocarbazone) have been studied by laser desorption/ionization activated by the surface of nanocrystalline silicon. All the studied complexes have been shown to be effectively ionized in the negative ion generation mode with the formation of molecular ions and one or more types of fragment ions. The limits of detection of metal ditizonates have been determined. The possibility of combining laser desorption/ionization with the droplet microextraction method for the determination of metals is investigated. The factors determining the concentration coefficient have been studied and optimal conditions for drip microextraction in the determination of gold have been found. The limit of gold detection was 5 pg/ml.

About the authors

А. S. Borodkov

Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences

Email: grechnikov@geokhi.ru
Russian Federation, Moscow

Ya. I. Simakina

Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences

Email: grechnikov@geokhi.ru
Russian Federation, Moscow

А. А. Grechnikov

Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences

Author for correspondence.
Email: grechnikov@geokhi.ru
Russian Federation, Moscow

References

  1. Иванчев Г. Дитизон и его применение. М.: Изд-во иностр. лит., 1961. 450 с.
  2. Irving H.M.N.H. Dithizone (Analytical Science Monographs). London: The Chemical Society, 1977. 112 p.
  3. Irving H.M.N.H., Iwantscheff G. The analytical applications of dithizone // Crit. Rev. Anal. Chem. 1980. V. 8. № 4. P. 321.
  4. Саввин С.Б., Джераян Т.Г., Петрова Т.В., Михайлова А.В. Чувствительные оптические элементы на уран (VI), ртуть (II) и свинец // Журн. аналит. химии. 1997. Т. 52. № 2. С. 154. (Savvin S.B., Dzherayan T.G., Petrova T.V. Mikhailova A.V. Sensitive optical sensors for uranium (VI), mercury (II), and lead // J. Anal. Chem. 1997. V. 52. № 2. P. 136.)
  5. Birsen D.Ö., Hayati F., Esma T., Reşat A. Simultaneous derivative spectrophotometric determination of cobalt(II) and nickel(II) by dithizone without extraction // Talanta. 2000. V. 53. № 1. P. 263.
  6. Gumus G., Filik H., Demirata B. Determination of bismuth and zinc in pharmaceuticals by first derivative UV–Visible spectrophotometry // Anal. Chim. Acta. 2005. V. 547. P. 138.
  7. Armelao L., Bandoli G., Barreca D., Bottaro G., Tondello E., Venzo A., Vittadini A. Molecular photochromic systems: a theoretical and experimental investigation on zinc (II) dithizonate // Appl. Organomet. Chem. 2007. V. 21. № 4. P. 246.
  8. Ntoi L.L.A., Buitendach B.E., von Eschwege K.G. Seven chromisms associated with dithizone // J. Phys. Chem. A. 2017. V. 121. № 48. P. 9243.
  9. Shengwen Q., Xiuqin Y., Rui L., Kuan C., Chunping Z., Jianguo T., et al. Nonlinear optical properties of mercury dithizonate in a polymer film // J. Mod. Opt. 2004 V. 51. № 11. P. 1671.
  10. Гречников А.А. Аналитические возможности метода лазерной десорбции-ионизации, активируемой поверхностью, при определении низкомолекулярных летучих соединений // Журн. аналит. химии. 2015. Т. 70. № 9. С. 916. (Grechnikov A.A. Analytical capabilities of surface-assisted laser desorption/ionization in the determination of low-molecular-weight volatile compounds // J. Anal. Chem. 2015. V. 70. № 9. P. 1047.)
  11. Law K.P., Larkin J.R. Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications // Anal. Bioanal. Chem. 2011. V. 399. № 8. P. 2597.
  12. Abdelhamid H.N. Nanoparticle-based surface assisted laser desorption ionization mass spectrometry: A review // Microchim. Acta. 2019. V. 186. P. 682.
  13. Bergman N., Shevchenko D., Bergquist J. Approaches for the analysis of low molecular weight compounds with laser desorption/ionization techniques and mass spectrometry // Anal. Bioanal. Chem. 2014. V. 406. P. 49.
  14. Гречников А.А., Бородков А.С., Жабин С.Н., Алимпиев С.С. О механизме десорбции ионов в условиях лазерной десорбции/ионизации с кремниевых поверхностей // Масс-спектрометрия. 2014. Т. 11. № 2. С. 71. (Grechnikov A.A., Borodkov A.S., Zhabin S.N., Alimpiev S.S. On the mechanism of ion desorption in the process of laser desorption/ionization from silicon surfaces // J. Anal. Chem. 2014. V. 69. № 14. P. 1361.)
  15. Arakawa R., Kawasaki H. Functionalized nanoparticles and nanostructured surfaces for surface-assisted laser desorption/ionization mass spectrometry // Anal. Sci. 2010. V. 26. P. 1229.
  16. Борисова Л.В., Бородков А.С., Гречников А.А., Уголкова Е.А., Минин В.В. Состав и строение комплексов Re(VI) по данным ЭПР и лазерной масс-спектрометрии // Журн. неорг. химии. 2013. Т. 58. № 8. С. 1056. (Borisova L.V., Borodkov A.S., Grechnikov A.A., Ugolkova E.A., Minin V.V. Composition and structure of Rhenium(VI) complexes as found by EPR and laser mass spectrometry // Russ. J. Inorg. Chem. 2013. V. 58. № 8. P. 940.)
  17. Grechnikov A., Nikiforov S., Strupat K., Makarov A. Determination of rhenium and osmium complexes by SALDI coupled to Orbitrap mass analyzer // Anal. Bioanal. Chem. 2014. V. 406. № 13. P. 3019.
  18. Гречников А.А., Бородков А.С., Алимпиев С.С., Никифоров С.М., Симановский Я.О., Караванский В.А. Определение соединений группы фенилалкиламинов методом поверхностно активированной лазерной десорбции-ионизации с аморфного кремния // Масс-спектрометрия. 2010. Т. 7. № 1. С. 53. (Grechnikov A.A., Borodkov A.S., Alimpiev S.S., Nikiforov S.M., Simanovskii Ya. O., Karavanskii V.A. Determination of phenylalkylamine compounds using surface-assisted desorption/ionization from amorphous silicon // J. Anal. Chem. 2010. V. 65. № 14. P. 1504.)
  19. Jeannot M.A., Cantwell F.F. Solvent microextraction into a single drop // Anal. Chem. 1996. V. 68. № 13. P. 2236.
  20. Grechnikov A.A., Borodkov A.S., Simanovsky Ya.O., Nikiforov S.M. Silicon surface assisted laser desorption ionization mass spectrometry for quantitative analysis // Eur. J. Mass Spectrom. 2021. V. 27. № 2–4. P. 84.
  21. Psillakis E., Kalogerakis N. Developments in liquid-phase microextraction // Trends Anal. Chem. 2003. V. 22. P. 565.
  22. Дмитриенко С.Г., Апяри В.В., Толмачева В.В., Горбунова М.В. Жидкостная экстракция органических соединений в каплю экстрагента. Обзор обзоров // Журн. аналит. химии. 2021. Т. 76. № 8. С. 675. (Dmitrienko S.G., Apyari V.V., Tolmacheva V.V., Gorbunova M.V. Liquid–liquid extraction of organic compounds into a single drop of the extractant: overview of reviews // J. Anal. Chem. 2021. V. 76. № 8. P. 907.)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».