Nanoobjects for the Luminescence Determination of Fluoroquinolones

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Fluoroquinolones are the most successful antibiotics, which also show antiviral and antitumor activity. The widespread use of fluoroquinolones in medicine, pharmaceutical chemistry, veterinary medicine and in animal, poultry, and fish feeds requires continuous improvement of methods for their determination in various samples. Sensitized fluorescence based on resonance electronic excitation energy transfer (RET) during the formation of chelates with terbium and europium ions is a promising and highly sensitive method for the determination of fluoroquinolones. This review analyzes the use of two types of nanoobjects—liquid micellar nanosystems and quantum dots based on the nanoparticles of silver, gold, and semiconductors and carbon, magnetic, and other nanomaterials—for increasing the efficiency of energy transfer and the sensitivity of the determination of fluoroquinolones in various samples. The terminology used in the inductive-resonance and exchange-resonance mechanisms of energy transfer is considered, and the fundamental difference in RET between liquid and solid types of nanoobjects is shown. Linear dynamic ranges of determined concentrations, limits of detection, and examples of practical application of sensitized fluorescence to the determination of fluoroquinolones in real samples with the use of nanoparticles and micellar nanosystems are tabulated.

About the authors

S. N. Shtykov

Institute of Chemistry, Chernyshevsky National Research Saratov State University

Email: shtykovsn@mail.ru
410012, Saratov, Russia

T. D. Smirnova

Institute of Chemistry, Chernyshevsky National Research Saratov State University

Email: shtykovsn@mail.ru
410012, Saratov, Russia

T. Yu. Rusanova

Institute of Chemistry, Chernyshevsky National Research Saratov State University

Author for correspondence.
Email: shtykovsn@mail.ru
410012, Saratov, Russia

References

  1. Чарушин В.Н., Носова Э.В., Липунова Г.Н., Чупахин О.Н. Фторхинолоны: синтез и применение. М.: ФИЗМАТЛИТ, 2014. 320 с.
  2. Zhang G.-F., Zhang S., Pan B., Liu X., Feng L.-S. 4-Quinolone derivatives and their activities against Gram positive pathogens // Eur. J. Med. Chem. 2018. V. 143. P. 710. https://doi.org/10.1016/j.ejmech.2017.11.082
  3. Yadav V., Talwar P. Repositioning of fluoroquinolones from antibiotic to anti-cancer agents: An underestimated truth // Biomed. Pharmacotherapy. 2019. V. 111. P. 934. https://doi.org/10.1016/j.biopha.2018.12.119
  4. Pham T.D.M., Ziora Z., Blaskovich M. Quinolone antibiotics // Med. Chem. Commun. 2019. V. 10. P. 1719. https://doi.org/10.1039/C9MD00120D
  5. Aldred K.J., Kerns R.J., Osheroff N. Mechanism of quinolone action and resistance // Biochemistry. 2014. V. 53. № 10. P. 1565. https://doi.org/10.1021/bi5000564
  6. Andreu V., Blasco C., Pico Y. Analytical strategies to determine quinolone residues in food and the environment // Trends Anal. Chem. 2007. V. 26. № 6. P. 534. https://doi.org/10.1016/j.trac.2007.01.010
  7. Czyrski A. Analytical methods for determining third and fourth generation fluoroquinolones: A Review // Chromatographia. 2017. V. 80. P. 181. https://doi.org/10.1007/s10337-016-3224-8
  8. Maciuca A-M., Munteanu A-C., Uivarosi V. Quinolone complexes with lanthanide ions: An insight into their analytical applications and biological activity // Molecules. 2020. V. 25. № 6. Article 1347. https://doi.org/10.3390/molecules25061347
  9. Yin S.N., Yao T., Wu T.H., Zhang Y., Wang P. Novel metal nanoparticle-enhanced fluorescence for determination of trace amounts of fluoroquinolone in aqueous solutions // Talanta. 2017. V. 174. P. 14. https://doi.org/10.1016/j.talanta.2017.05.053
  10. Егунова О.Р., Решетникова И.С., Казимирова К.О., Штыков С.Н. Магнитная твердофазная экстракция и флуориметрическое определение некоторых фторхинолонов // Журн. аналит. химии. 2020. Т. 75. № 1. С. 31. https://doi.org/10.1134/S1061934820010062
  11. Smirnova T.D., Shtykov S.N., Zhelobitskaya E.A. Energy transfer in liquid and solid nanoobjects: Application in luminescent analysis // Phys. Sci. Rev. 2019. V. 4. № 3. Article 20189981. https://doi.org/10.1515/psr-2018-9981
  12. Смирнова Т.Д., Штыков С.Н., Неврюева Н.В., Жемеричкин Д.А., Паращенко И.И. Флуориметрическое определение флюмеквина с помощью сенсибилизированной флуоресценции тербия в организованных средах // Хим.-фарм. журн. 2010. Т. 44. № 11. С. 13. https://doi.org/10.1007/s11094-011-0535-910.1007/s11094-011-0535-9 (Smirnova T.D., Shtykov S.N., Nev-ryueva N.V., Zhemerichkin D.A., Parashchenko I.I. Fluorimetric assay of flumequine using sensitized terbium fluorescence in organized media // Pharm. Chem. J. 2011. V. 44. P. 635. )https://doi.org/10.30906/0023-1134-2010-44-11-49-52
  13. Штыков С.Н., Смирнова Т.Д., Былинкин Ю.Г., Калашникова Н.В., Жемеричкин Д.А. Определение ципрофлоксацина и энрофлоксацина методом сенсибилизированной флуоресценции европия в присутствии второго лиганда и мицелл анионных ПАВ // Журн. аналит. химии. 2007. Т. 62. № 2. С. 153. https://doi.org/10.1134/S1061934807020062 (Shtykov S.N., Smirnova T.D., Bylinkin Yu.G., Kalashnikova N.V., Zhemerichkin D.A. Determination of ciprofloxacin and enrofloxacin by the sensitized fluorescence of europium in the presence of the second ligand and micelles of anionic surfactants // J. Anal. Chem. 2007. V. 62. P. 136.)
  14. Yao T., Wang H., Si X., Yin S., Wu T., Wang P. Determination of trace fluoroquinolones in water solutions and in medicinal preparations by conventional and synchronous fluorescence spectrometry // Open Chem. 2018. V. 16. P. 1122. https://doi.org/10.1515/chem-2018-0125
  15. Штыков С.Н. Химический анализ в нанореакторах: основные понятия и применение // Журн. аналит. химии. 2002. № 10. С. 1018. https://doi.org/10.1023/A:1020410605772 (Shtykov S.N. Chemical analysis in nanoreactors: Main concepts and applications // J. Anal. Chem. 2002. V. 57. P. 859.)
  16. Nanoanalytics: Nanoobjects and Nanotechnologies in Analytical Chemistry / Ed. Shtykov, S. Berlin: De Gruyter. Germany, 2018. 446 p. https://www.degruyter.com/document/doi/10.1515/9783110542011/html
  17. Borse Sh., Rafique R., Murthy Z.V.P., Park T.J., Kailasa S.K. Applications of upconversion nanoparticles in analytical and biomedical sciences: A review // Analyst. 2022. V. 147. № 14. P. 3155. https://doi.org/10.1039/D1AN02170B
  18. Штыков С.Н., Смирнова Т.Д., Былинкин Ю.Г. Определение аденозинтрифосфорной кислоты по тушению флуоресценции дикетонатного хелата Eu(III) в мицеллах Бридж-35 // Журн. аналит. химии. 2004. Т. 59. № 5. С. 495. (Shtykov S.N., Smirnova T.D., Bylinkin Yu.G. Determination of adenosine triphosphoric acid by its effect on the quenching of the fluorescence of europium(III) diketonate in micelles of Brij-35 // J. Anal. Chem. 2004. V. 59. № 5. 2004. P. 438. )
  19. Sultangaziyev A., Bukasov R. Review: Applications of surface-enhanced fluorescence (SEF) spectroscopy in bio-detection and biosensing // Sens. Bio-Sens. Res. 2020. V. 30. Article 100382. https://doi.org/10.1016/j.sbsr.2020.100382
  20. Lakowicz J.R., Geddes C.D., Gryczynski I., Malicka J., Gryczynski Z., Aslan K., Lukomska J., Matveeva E., Zhang J., Badugu R., Huang J. Advances in surface-enhanced fluorescence // J. Fluoresc. 2004. V. 14. № 4. P. 425. https://doi.org/10.1023/B:JOFL.0000031824.48401.5c
  21. Dasary S.S.R., Rai U.S., Yu H., Anjaneyulu Y., Dubey M., Ray P.C. Gold nanoparticle based surface enhanced fluorescence for detection of organophosphorus agents // Chem. Phys. Lett. 2008. V. 460. № 1. P. 187. https://doi.org/10.1016/j.cplett.2008.05.082
  22. Pauling L., Peixoto F., Santos J.F.L., Andrade G.F.S. Surface enhanced fluorescence immuno-biosensor based on gold nanorods // Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2023. V. 284. № 5. Article 121753. https://doi.org/10.1016/j.saa.2022.121753
  23. Lee I-Y.S., Suzuki H., Ito K., Yasuda Y. Surface-enhanced fluorescence and reverse saturable absorption on silver nanoparticles // J. Phys. Chem. B. 2004. V. 108. № 50. P. 19368. https://doi.org/10.1021/jp0471554
  24. Geddes C.D., Lakowicz J.R. Metal enhanced fluorescence // J. Fluoresc. 2002. V. 12. № 2. P. 121. https://doi.org/10.1023/A:1016875709579
  25. Geddes C.D., Cao H., Gryczynski I., Gryczynski Z., Fang J.Y., Lakowicz J.R. Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging // J. Phys. Chem. A. 2003. V. 107. P. 3443. https://doi.org/10.1021/jp022040q
  26. Lakowicz J.R. Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission // Anal. Biochem. 2005. V. 337. № 2. P. 171. https://doi.org/10.1016/j.ab.2004.11.026
  27. Aslan K., Lakowicz J.R., Szmacinski H., Geddes C.D. Metal-enhanced fluorescence solution-based sensing platform // J. Fluoresc. 2004. V. 14. № 6. P. 677.
  28. Geddes C.D. Metal-enhanced fluorescence // Phys. Chem. Chem. Phys. 2013. V. 15. Article 19537. https://doi.org/10.1039/C3CP90129G
  29. Jeong Y., Kook Y-M., Lee K., Koh W.-G. Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments // Biosens. Bioelectron. 2018. V. 111. P. 102. https://doi.org/10.1016/j.bios.2018.04.007
  30. Dragan A.I., Mali B., Geddes C.D. Wavelength-dependent metal-enhanced fluorescence using synchronous spectral analysis // Chem. Phys. Lett. 2013. V. 556. P. 168. https://doi.org/10.1016/j.cplett.2012.11.035
  31. Ranjan R., Esimbekova E.N., Kirillova M.A., Kratasyuk V.A. Metal-enhanced luminescence: Current trend and future perspectives – A review // Anal. Chim. Acta. 2017. V. 971. P. 1. https://doi.org/10.1016/j.aca.2017.03.051
  32. Fu Y., Zhang J., Lakowicz J.R. Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods // J. Am. Chem. Soc. 2010. V. 132. P. 5540. https://doi.org/10.1021/ja9096237
  33. Zhu Z., Yuan P., Li S., Garai M., Hong M., Xu Q.-H. Plasmon-enhanced fluorescence in coupled nanostructures and applications in DNA detection // ACS Appl. Bio Mater. 2018. V. 1. P. 118. https://doi.org/10.1021/acsabm.8b00032
  34. Emerson N.T., Yang H. Reproducibly measuring plasmon-enhanced fluorescence in bulk solution across a 20-fold range of optical densities // Anal. Chem. 2021. V. 93. № 22. P. 8045. https://doi.org/10.1021/acs.analchem.1c01210
  35. Ding W., Hsu L.-Y., Schatz G.C. Plasmon-coupled resonance energy transfer: A real-time electrodynamics approach // J. Chem. Phys. 2017. V. 146. № 6. Article 064109. https://doi.org/10.1063/1.4975815
  36. Hsu L.-Y., Wendu D.W., George C., Schatz G.C. Plasmon-coupled resonance energy transfer // J. Phys. Chem. Lett. 2017. V. 8. № 10. P. 2357. https://doi.org/10.1021/acs.jpclett.7b00526
  37. Zhao L., Ming T., Shao L., Chen H., Wang J. Plasmon-controlled Förster resonance energy transfer // J. Phys. Chem. C 2012. V. 116. P. 8287. https://doi.org/10.1021/jp300916a
  38. Kim K.-S., Yoo S.I., Sohn B.-H. Metal-coupled fluorescence resonance energy transfer in layer-by-layer assemblies for dual modality fluorescence enhancement // Macromol. Chem. Phys. 2018. V. 219. № 13. Article 1800115. https://doi.org/10.1002/macp.201800115
  39. Li J., Cushing S.K., Meng F., Senty T.R., Bristow A.D., Wu N. Plasmon-induced resonance energy transfer for solar energy conversion // Nature Photonics. 2015. V. 9. P. 601. https://doi.org/10.1038/nphoton.2015.142
  40. Teunissen A.J.P., Peґrez-Medina C., Meijerink A., Mulder W.J.M. Investigating supramolecular systems using Förster resonance energy transfer // Chem. Soc. Rev. 2018. V. 47. P. 7027. https://doi.org/10.1039/c8cs00278a
  41. He Z., Li F., Zuo P., Tian H. Principles and applications of resonance energy transfer involving noble metallic nanoparticles // Materials. 2023. V. 16. № 8. Article 3083. https://doi.org/10.3390/ma16083083
  42. Metal-enhanced fluorescence / Ed. Geddes C.D. New Jersey: John Wiley & Sons. Inc., 2010. 625 p.
  43. Kelly K.L., Coronado E., Zhao L., Schatz G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment // J. Phys. Chem. B. 2003. V. 107. P. 668. https://doi.org/10.1021/jp026731y
  44. Park J.-E., Kim J., Nam J.-M. Emerging plasmonic nanostructures for controlling and enhancing photoluminescence // Chem. Sci. 2017. V. 8. P. 4696. https://doi.org/10.1039/C7SC01441D
  45. Willets K.A., Van Duyne R.P. Localized surface plasmon resonance spectroscopy and sensing // Annu. Rev. Phys. Chem. 2007. V. 58. P. 267. https://doi.org/10.1146/annurev.physchem.58. 032806.104607
  46. Govorov A., Martínez P-L.H., Demir H.V. Understanding and modeling Förster-type resonance energy transfer (FRET) // Nanosci. Nanotechnol. 2016. P. 53. https://doi.org/10.1007/978-981-287-378-1
  47. Stranik O., Nooney R., McDonagh C., MacCraith B.D. Optimization of nanoparticle size for plasmonic enhancement of fluorescence // Plasmonics. 2007. V. 2. № 1. P. 15. https://doi.org/10.1007/s11468-006-9020-9
  48. Tam F., Goodrich G.P., Johnson B.R., Halas N.J. Plasmonic enhancement of molecular fluorescence // Nano Lett. 2007. V. 7. № 2. P. 496. https://doi.org/10.1021/nl062901x
  49. Zhang Y., Aslan K., Previte M., Geddes C.D. Metal-enhanced fluorescence: Surface plasmons can radiate a fluorophore’s structured emission // Appl. Phys. Lett. 2007. V. 90. № 5. Article 053107. https://doi.org/10.1063/1.2435661
  50. Selivanova N., Galyametdinov Y. Terbium(III) as a fluorescent probe for molecular detection of ascorbic acid // Chemosensors. 2021. V. 9. № 6. Article 134. https://doi.org/10.3390/chemosensors9060134
  51. Dong H., Sun L.-D., Yan C.-H. Energy transfer in lanthanide upconversion studies for extended optical applications // Chem. Soc. Rev. 2015. V. 44. P. 1608. https://doi.org/10.1039/C4CS00188E
  52. Zhang H., Chen Z-H., Liu X., Zhang F. A mini-review on recent progress of new sensitizers for luminescence of lanthanide doped nanomaterials // Nano Res. 2020. V. 13. № 7. P. 1795. https://doi.org/10.1007/s12274-020-2661-8
  53. Jouybana A., Rahimpoura E. Optical sensors based on silver nanoparticles for determination of pharmaceuticals: An overview of advances in the last decade // Talanta. 2020. V. 217. Article 121071. https://doi.org/10.1016/j.talanta.2020.121071
  54. Zhang Y., Duan B., Bao Q., Yang T., Wei T. Wang J., Mao Ch., Zhang C., Yang M. Aptamer-modified sensitive nanobiosensors for the specific detection of antibiotics // J. Mater. Chem. B. 2020. V. 80. P. 8607. https://doi.org/10.1039/D0TB01441A
  55. Camarca A., Varriale A., Capo A., Pennacchio A., Calabrese A., Giannattasio C., Almuzara C.M., D’Auria S., Staiano M. Emergent biosensing technologies based on fluorescence spectroscopy and surface plasmon resonance // Sensors. 2021. V. 21. № 3. Article 906. https://doi.org/10.3390/s21030906
  56. Kaczmarek M. Lanthanide-sensitized luminescence and chemiluminescence in the systems containing most often used medicines; a review // J. Lumin. 2020. V. 222. Article 117174. https://doi.org/10.1016/j.jlumin.2020.117174
  57. Gaviria-Arroyave M.I., Cano J.B., Peñuela, Gustavo A. Nanomaterial-based fluorescent biosensors for monitoring environmental pollutants: A critical review // Talanta Open. 2020. V. 2. Article 100006. https://doi.org/10.1016/j.talo.2020.100006
  58. Li H., Wu X. Silver nanoparticles-enhanced rare earth co-luminescence effect of Tb(III)–Y(III)–dopamine system // Talanta. 2015. V. 138. P. 203. https://doi.org/10.1016/j.talanta.2015.02.023
  59. Lakowicz J.R., Ray K., Chowdhury M., Szmacinski H., Fu Y. Zhang J., Nowaczyk K. Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy // Analyst. 2008. V. 133. P. 1308. https://doi.org/10.1039/B802918K
  60. Zenin V.A., Andryieuski A., Malureanu R., Radko I.P., Volkov V.S., Gramotnev D.K., Lavrinenko A.V., Bozhevolnyi S.I. Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas // Nano Lett. 2015. V. 15. № 12. P. 8148. https://doi.org/10.1021/acs.nanolett.5b03593
  61. Aslan K., Gryczynski I., Malicka J., Matveeva E., Lakowicz J.R., Geddes C.D. Metal-enhanced fluorescence: An emerging tool in biotechnology // Curr. Opin. Biotechnol. 2005. V. 16. P. 55. https://doi.org/10.1016/j.copbio.2005.01.001
  62. Wu M., Lakowicz J.R., Geddes C.D. Enhanced lanthanide luminescence using silver nanostructures: Opportunities for a new class of probes with exceptional spectral characteristics // J. Fluoresc. 2005. V. 15. P. 53. https://doi.org/10.1007/s10895-005-0213-y
  63. Торопов Н.А., Камалиева А.Н., Набиуллина Р.Д. Резонансное и нерезонансное взаимодействие полупроводниковых нанокристаллов с локализованными плазмонами // Научно-технический вестник информационных технологий, механики и оптики. 2019. Т. 19. № 2. С. 189. https://doi.org/10.17586/2226-1494-2019-19-2-189-195
  64. Wang H., Si X., Wu T., Wang P. Silver nanoparticles enhanced fluorescence for sensitive determination of fluoroquinolones in water solutions // Open Chem. 2019. V. 17. P. 884. https://doi.org/10.1515/chem-2019-0094
  65. Kamruzzaman M., Alam A-M., Lee S.H., Suh Y.S., Kim Y.H., Kim G.M., Kim S.H. Method for determination of fluoroquinolones based on the plasmonic interaction between their fluorescent terbium complexes and silver nanoparticles // Microchim. Acta. 2011. V. 174. P. 353. https://doi.org/10.1007/s00604-011-0633-0
  66. Roy S.M., Roy D.R. Levofloxacin capped Ag-nanoparicles: A new highly selective sensor for cations under joint experimental and DFT investigation // Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2017. V. 179. P. 178. https://doi.org/10.1016/j.saa.2017.02.030
  67. Yan Z., Yi H., Wang L., Zhou X., Yan R., Zhang D., Wang S., Su L., Zhou Sh. Fluorescent aptasensor for ofloxacin detection based on the aggregation of gold nanoparticles and its effect on quenching the fluorescence of Rhodamine B // Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2019. V. 221. № 5. Article 117203. https://doi.org/10.1016/j.saa.2019.117203
  68. Chen S., Su X., Yuan C., Ji C.Q., Qiao Y., Li Y., He L., Zou L., Ao X., Liu A., Liu Sh., Yang Y. A magnetic phosphorescence molecularly imprinted polymers probe based on manganese-doped ZnS quantum dots for rapid detection of trace norfloxacin residual in food // Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2021. V. 253. Article 119577. https://doi.org/10.1016/j.saa.2021.119577
  69. Kaur B., Kumar R., Chand S., Singh K., Malik A.K. Determination of norfloxacin in urine and pharmaceutical samples using terbium doped zinc sulphide nanomaterials-sensitized fluorescence method // Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2019. V. 214. P. 261. https://doi.org/10.1016/j.saa.2019.02.015
  70. Liu X., Wang T., Lu Y., Wang W., Zhou Z. Constructing carbon dots and CdTe quantum dots multi-functional composites for ultrasensitive sensing and rapid degrading ciprofloxacin // Sens. Actuators B: Chem. 2019. V. 289. P. 242. https://doi.org/10.1016/j.snb.2019.03.094
  71. Yuphintharakun N., Nurerk P., Chullasat K., Kanatharana P., Davis F., Sooksawat D., Bunkoed O. A nanocomposite optosensor containing carboxylic functionalized multiwall carbon nanotubes and quantum dots incorporated into a molecularly imprinted polymer for highly selective and sensitive detection of ciprofloxacin // Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2018. V. 201. P. 382. https://doi.org/10.1016/j.saa.2018.05.034
  72. Sri S., Singh U., Kumar R., Lakshmi G.B.V.S., Solanki P.R. Ignition of photoluminescent intensity of quenched MoS2 quantum dots tetracycline mixture by levofloxacin via photoinduced electron transfer // JCIS Open. 2021. V. 3. Article 100021. https://doi.org/10.1016/j.jciso.2021.100021
  73. Liu X., Xu Z, Han Z., Fan L., Liu S., Yang H., Chen Z., Sun T., Ning B. A highly sensitive and dual-readout immunoassay for norfloxacin in milk based on QDs-FM@ALP-SA and click chemistry // Talanta. 2021. V. 234. № 1. Article 122703. https://doi.org/10.1016/j.talanta.2021.122703
  74. Suanchan K., Chansud N., Sanguanprang S., Bunkoed O. A nanocomposite optosensing probe based on hierarchical porous carbon and graphene quantum dots incorporated in selective polymer for the detection of trace ofloxacin // Colloids Surf. A: Physicochem. Eng. Asp. 2021. V. 628. Article 127376. https://doi.org/10.1016/j.colsurfa.2021.127376
  75. Chansud N., Longnapa N., Bunkoed O. A nanohybrid magnetic sensing probe for levofloxacin determination integrates porous graphene, selective polymer and graphene quantum dots // J. Pharm. Biomed. Anal. 2021. V. 205. Article 114316. https://doi.org/10.1016/j.jpba.2021.114316
  76. Ali H.R., Hassan A.I., Hassan Y.F., El-Wekil M.M. Mannitol capped magnetic dispersive micro-solid-phase extraction of polar drugs sparfloxacin and orbifloxacin from milk and water samples followed by selective fluorescence sensing using boron-doped carbon quantum dots // J. Environ. Chem. Eng. 2021. V. 9. № 2. Article 105078. https://doi.org/10.1016/j.jece.2021.105078
  77. Tang Y., Liu H., Gao J. Liu X., Gao X., Lu X., Fang G., Wang J., Li J. Upconversion particle@Fe3O4@molecularly imprinted polymer with controllable shell thickness as high-performance fluorescent probe for sensing quinolones // Talanta. 2018. V. 181. P. 95. https://doi.org/10.1016/j.talanta.2018.01.006
  78. Vakh C., Pochivalov A., Koronkiewicz S., Kalinowski S., Postnov V., Bulatov A. A chemiluminescence method for screening of fluoroquinolones in milk samples based on a multi-pumping flow system // Food Chem. 2019. V. 270. № 1. P. 10. https://doi.org/10.1016/j.foodchem.2018.07.073
  79. Ding X., Ahmad W., Zareef M., Rong Y., Zhang Y., Wu J., Ouyang Q., Chen Q. MIL-101(Cr)-induced nano-optical sensor for ultra-sensitive detection of enrofloxacin in aquatic products using a fluorescence turn-on mechanism via upconversion nanoparticles // Sens. Actuators B: Chem. 2022. V. 365. Article 131915. https://doi.org/10.1016/j.snb.2022.131915
  80. Yuan X., Lv W., Wang B., Yan C., Ma Q. Zheng B., Du J., Xiao D. Silicon nanoparticles-based ratiometric fluorescence platform: Real-time visual sensing to ciprofloxacin and Cu2+ // Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2021. V. 253. Article 119599. https://doi.org/10.1016/j.saa.2021.119599
  81. Wu C., Cheng R., Wang J., Wang Y., Jing X., Chen R., Lin Sun, Yan Y. Fluorescent molecularly imprinted nanoparticles for selective and rapid detection of ciprofloxacin in aquaculture water // J. Sep. Sci. 2018. V. 41. № 19. P. 3782. https://doi.org/10.1002/jssc.201800418
  82. Jiang D., Wei M., Dub X., Qin M., Shan X., Wang W., Chen Z. Ultrasensitive near-infrared aptasensor for enrofloxacin detection based on wavelength tunable AgBr nanocrystals electrochemiluminescence emission triggered by O-terminated Ti3C2 MXene // Biosens. Bioelectron. 2022. V. 200. Article 113917. https://doi.org/10.1016/j.bios.2021.113917
  83. Rizk M., Habi I.H.I., Mohamed D., Mowak S., El-Eryan Th. Lanthanide-DNA probe for spectrofluorimetric determination of some 6-fluoroquinolones in eye-ear pharmaceutical preparations // Microchem. J. 2019. V. 150. Article 104138. https://doi.org/10.1016/j.microc.2019.104138
  84. Li Z., Cui Z., Tang Y., Liu X., Zhang X., Liu B., Wang X., Draz M.Sh., Gao X. Fluorometric determination of ciprofloxacin using molecularly imprinted polymer and polystyrene microparticles doped with europium(III)(DBM)3phen // Microchim. Acta. 2019. V. 186. P. 334. https://doi.org/10.1007/s00604-019-3448-z
  85. Sari E., Üzek R., Duman M., Denizli A. Detection of ciprofloxacin through surface plasmon resonance nanosensor with specific recognition sites // J. Biomater. Sci. Polym. 2018. V. 29. № 11. P. 1302. https://doi.org/10.1080/09205063.2018.1457417
  86. Okan M., Sari E., Duman M. Molecularly imprinted polymer based micromechanical cantilever sensor system for the selective determination of ciprofloxacin // Biosens. Bioelectron. 2017. V. 88. P. 258. https://doi.org/10.1016/j.bios.2016.08.047
  87. Xu X., Feng L., Li J., Yuan P., Feng J., Wei L., Chen X. Rapid screening detection of fluoroquinolone residues in milk based on turn-on fluorescence of terbium coordination polymer nanosheets // Chin. Chem. Lett. 2019. V. 30. № 3. P. 549. https://doi.org/10.1016/j.cclet.2018.11.026
  88. Song Y., Bai J., Zhang R. He H., Li Ch., Wang J., Li Sh., Yuan Peng Y., Ning B., Wang M., Gao Zh. Michael-addition-mediated photonic crystals allow pretreatment-free and label-free sensoring of ciprofloxacin in fish farming water // Anal. Chem. 2017. V. 90. № 2. P. 1388. https://pubs.acs.org/doi/abs/10.1021/acs.analchem.7b04655
  89. Mohamadian E., Shayanfar A., Khoubnasabjafari M., Jouyban-Gharamaleki V., Ghaffaryf S., Jouyban A. An overview on terbium sensitized based-optical sensors/nanosensors for determination of pharmaceuticals // Appl. Spectrosc. 2022. V. 57. P. 39. https://doi.org/10.1080/05704928.2020.1843174
  90. Ding R., Chen Y., Wang O., Wu Z., Zhang X., Li B., Lin L. Recent advances in quantum dots-based biosensors for antibiotics detection // J. Pharm. Anal. 2022. V. 12. № 3. P. 355. https://doi.org/10.1016/j.jpha.2021.08.002
  91. Liu Q., Zhang H., Jiang H., Yang P., Luo L., Niu Q., You T. Photoactivities regulating of inorganic semiconductors and their applications in photoelectrochemical sensors for antibiotics analysis: A systematic review // Biosens. Bioelectron. 2022. V. 216. Article 114634. https://doi.org/10.1016/j.bios.2022.114634
  92. Bunkoed O., Donkhampa P., Nurerk P. A nanocomposite optosensor of hydroxyapatite and graphene quantum dots embedded within highly specific polymer for norfloxacin detection // Microchem. J. 2020. V. 158. Article 105127. https://doi.org/10.1016/j.microc.2020.105127
  93. Mehlhorn A., Rahimi P., Joseph Y. Aptamer-based biosensors for antibiotic detection: A review // Biosensors. 2018. V. 8. № 2. Article 54. https://doi.org/10.3390/bios8020054
  94. Zhou Y., Mahapatra C., Chen H., Peng X., Ramakrishna S., Nanda H.S. Recent developments in fluorescent aptasensors for detection of antibiotics // Curr. Opin. Biomed. Eng. 2020. V. 13. P. 16. https://doi.org/10.1016/j.cobme.2019.08.003
  95. Hong J., Su M., Zhao K., Zhou Y., Wang J., Zhou S-F., Lin X. A minireview for recent development of nanomaterial-based detection of antibiotics // Biosensors. 2023. V. 13. № 3. Article 327. https://doi.org/10.3390/bios13030327
  96. Егорова А.В., Скрипинец Ю.В., Александрова Д.И., Антонович В.П. Сенсибилизированная люминесценция ионов лантанидов и ее применение в биоанализе (обзор) // Методы и объекты химического анализа. 2010. Т. 5. № 4. С. 180.
  97. Hernandez-Arteseros J.A., Compano R., Ferrer R., Prat M.D. Application principal component regression to luminescence data for the screening of ciprofloxacin and enrofloxacin in animal tissues // Analyst. 2000. V. 125. P. 1155. https://doi.org/10.1039/A910275M
  98. Ocana J.A., Barragan F.J., Callejon M. Spectrofluorimetric determination of moxifloxacin in tablets, human urine and serum // Analyst. 2000. V. 125. № 12. P. 2322. https://doi.org/10.1039/B005991I
  99. Ocaña J.A., Callejón M., Barragán F.J. Terbium-sensitized luminescence determination of levofloxacin in tablets and human urine and serum // Analyst. 2000. V. 125. № 10. P. 1851. https://doi.org/10.1039/b004252h
  100. Ocaña J.A., Callejón M., Barragán F.J. Determination of trovafloxacin in human serum by time resolved terbium-sensitised luminescence // Eur. J. Pharm. Sci. 2001. V. 13. № 3. P. 297. https://doi.org/10.1016/S0928-0987(01)00116-6
  101. Ocaña J.A., Barragán F.J., Callejón M. Spectrofluorimetric and micelle-enhanced spectrofluorimetric determination of gatifloxacin in human urine and serum // J. Pharm. Biomed. Anal. 2005. V. 23. 37. № 2. P. 327. https://doi.org/10.1016/j.jpba.2004.10.027
  102. Wang F., Huang W., Hou Y., Xu Z. The Co-luminescence Effect of Eu–Gd–Ofloxacin–SDBS system and its analytical application // J. Fluoresc. 2007. V. 17. P. 105. https://doi.org/10.1007/s10895-006-0136-2
  103. Guo Ch., Wang L., Hou Zh., Jiang W., Sang L. Micelle-enhanced and terbium-sensitized spectrofluorimetric determination of gatifloxacin and its interaction mechanism // Spectrochim. Acta A. 2009. V. 72. № 3. P. 766. https://doi.org/10.1016/j.saa.2008.10.063
  104. Wu H., Zhao G.-Y., Du L.-M. Determination of ofloxacin and gatifloxacin by mixed micelle-mediated cloud point extraction-fluorimetry combined methodology // Spectrochim. Acta A. 2010. V. 75. P. 1624. https://doi.org/10.1016/j.saa.2010.02.031
  105. Terrado-Campos D., Tayeb-Cherif K., Peris-Vicente J., Carda-Broch S., Esteve-Romero J. Determination of oxolinic acid, danofloxacin, ciprofloxacin, and enrofloxacin in porcine and bovine meat by micellar liquid chromatography with fluorescence detection // Food Chem. 2017. V. 221. P. 1277. https://doi.org/10.1016/j.foodchem.2016.11.029
  106. Wang L., Liu J., Wang Z., Wang Y. Fluorescence resonance energy transfer between cerium ion(III) and levofloxacin in micellar solution and its analytical application to the determination of levofloxacin // Spectrosc. Lett. 2019. V. 52. № 6. P. 313. https://doi.org/10.1080/00387010.2019.1629961
  107. Данилина Т.Г., Смирнова Т.Д., Брышкина А.Д., Левина Н.А., Неврюева Н.В. Влияние мицелл поверхностно-активных веществ на флуоресцентные свойства комплекса иттрия с левофлоксацином // Изв. Сарат. ун-та. Нов. сер. Сер. Химия. Биология. Экология. 2019. Т. 19. № 4. С. 372. https://doi.org/10.18500/1816-9775-2019-19-4-372-378
  108. Штыков С.Н., Смирнова Т.Д., Калашникова Н.В., Жемеричкин Д.А. Флуориметрический метод определения норфлоксацина, основанный на явлении переноса энергии // Изв. вузов. Химия и хим. технол. 2006. Т. 49. № 7. С. 27.
  109. Штыков С.Н., Смирнова Т.Д., Неврюева Н.В., Богомолова И.В. Комплексы с переносом энергии в организованных средах для определения флюмеквина в биологических объектах // Изв. вузов. Химия и хим. технол. 2010. Т. 53. № 11. С. 24.
  110. Смирнова Т.Д., Неврюева Н.В. Флуориметрическое определение оксолиновой и налидиксовой кислот с использованием мицеллярных растворов ПАВ // Заводск. лаборатория. Диагностика материалов. 2010. № 12. С. 17.
  111. Смирнова Т.Д., Штыков С.Н., Кочубей В.И., Хрячкова Е.И. Перенос энергии возбуждения в хелате европия с доксициклином в присутствии второго лиганда в мицеллярных растворах неионогенных ПАВ // Оптика и спектроскопия. 2011. Т. 110. № 1. С. 65. https://doi.org/10.1134/S0030400X1101019X (Smirnova T.D., Shtykov S.N., Kochubei V.I., Khryachkova E.S. Excitation energy transfer in europium chelate with doxycycline in the presence of a second ligand in micellar solutions of nonionic surfactants // Optiсs Spectrosс. 2011. V. 110. № 1. P. 60.)
  112. Штыков С.Н., Смирнова Т.Д., Молчанова Ю.В. Синергетические эффекты в системе европий-теноилтрифторацетон-фенантролин в мицеллах блоксополимеров ПАВ и их аналитическое значение // Журн. аналит. химии. 2001. Т. 56. № 10 С. 1052. https://doi.org/10.1023/A:1012305310980 (Shtykov S.N., Smirnova T.D., Molchanova Yu.V. Synergistic effects in the europium(III)–thenoyltrifluoroacetone–1,10-phenanthroline system in micelles of block copolymers of nonionic surfactants and their analytical applications // J. Anal. Chem. 2001. V. 56. № 10. P. 920.)
  113. Смирнова Т.Д., Данилина Т.Г., Русанова Т.Ю., Симбирева Н.А. Влияние серебряных наночастиц на флуоресцентные свойства левофлоксацина в присутствии ионов иттрия(III) в водных и мицеллярных средах поверхностно-активных веществ // Журн. аналит. химии. 2021. Т. 76. № 1. С. 67. https://doi.org/10.31657/s004445022101014x (Smirnova T.D., Danilina T.G., Rusanova T.Yu., Simbireva N.A. Effect of silver nanoparticles on the fluorescence properties of levofloxacin in the presence of yttrium(III) ions in aqueous and micellar surfactant media // J. Anal. Chem. 2021. V. 76. № 1. P. 89.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (116KB)
3.

Download (23KB)

Copyright (c) 2023 С.Н. Штыков, Т.Д. Смирнова, Т.Ю. Русанова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies