Specificities of the Fourier Transform Infrared Spectroscopic Methodology and Interpretation of Spectroscopic Data in Microbiological Analyses

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this mini-review, some of the most significant, from the authors’ point of view, features of the methodology of Fourier transform infrared (FTIR) spectroscopy and interpretation of experimentally obtained spectroscopic data are considered, as applied to the molecular spectrochemical analysis of microbiological objects using examples published in the specialised scientific literature mainly in recent years. Examples of typical inaccuracies and errors both of a methodological nature and arising in the interpretation of spectroscopic data are also presented and briefly discussed.

About the authors

A. A. Kamnev

Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences

Email: a.a.kamnev@mail.ru
410049, Saratov, Russia

A. V. Tugarova

Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences

Author for correspondence.
Email: a.a.kamnev@mail.ru
410049, Saratov, Russia

References

  1. Norris K.P. Infra-red spectroscopy and its application to microbiology // J. Hyg. 1959. V. 57. № 3. P. 326. https://doi.org/10.1017/S0022172400020192
  2. Naumann D., Helm D., Labischinski H. Microbiological characterizations by FT-IR spectroscopy // Nature. 1991. V. 351. № 6321. P. 81. https://doi.org/10.1038/351081a0
  3. Naumann D. Infrared spectroscopy in microbiology / Encyclopedia of Analytical Chemistry / Ed. Meyers R.A. Wiley: Chichester, UK, 2000. P. 102. https://doi.org/10.1002/9780470027318.a0117
  4. Franco-Duarte R., Kadam S., Kaushik K.S., Painuli S., Semwal P., Cruz-Martins N., Rodrigues C.F. Quick detection and confirmation of microbes in food and water / Present Knowledge in Food Safety. A Risk-Based Approach Through the Food Chain / Eds. Knowles M.E., Anelich L.E., Boobis A.R., Popping B. London: Acad. Press, 2023. Ch. 59. P. 893. https://doi.org/10.1016/B978-0-12-819470-6.00030-5
  5. Ramzan M., Raza A., un Nisa Z., Musharraf S.G. Recent studies on advance spectroscopic techniques for the identification of microorganisms: A review // Arab. J. Chem. 2023. V. 16. № 3. Article 104521. https://doi.org/10.1016/j.arabjc.2022.104521
  6. Sportelli M.C., Kranz C., Mizaikoff B., Cioffi N. Recent advances on the spectroscopic characterization of microbial biofilms: A critical review // Anal. Chim. Acta. 2022. V. 1195. Article 339433. https://doi.org/10.1016/j.aca.2022.339433
  7. Cheah Y.T., Chan D.J.C. A methodological review on the characterization of microalgal biofilm and its extracellular polymeric substances // J. Appl. Microbiol. 2022. V. 132. № 5. P. 3490. https://doi.org/10.1111/jam.15455
  8. Xin Z., Chen J., Peng H. Advances in spectral techniques for detection of pathogenic microorganisms // Zoonoses. 2022. V. 2. Article 8. https://doi.org/10.15212/ZOONOSES-2021-0027
  9. Fernández-Domínguez D., Guilayn F., Patureau D., Jimenez J. Characterising the stability of the organic matter during anaerobic digestion: A selective review on the major spectroscopic techniques // Rev. Environ. Sci. Bio/Technol. 2022. V. 21. P. 691. https://doi.org/10.1007/s11157-022-09623-2
  10. Harrison J.P., Berry D. Vibrational spectroscopy for imaging single microbial cells in complex biological samples // Front. Microbiol. 2017. V. 8. Article 675. https://doi.org/10.3389/fmicb.2017.00675
  11. Pan M., Zhu L., Chen L., Qiu Y., Wang J. Detection techniques for extracellular polymeric substances in biofilms: A review // BioResources. 2016. V. 11. № 3. P. 8092. https://doi.org/10.15376/biores.11.3.8092-8115
  12. Jansson M.M., Kögler M., Hörkkö S., Ala-Kokko T., Rieppo L. Vibrational spectroscopy and its future applications in microbiology // Appl. Spectrosc. Rev. 2023. V. 58. № 2. P. 132. https://doi.org/10.1080/05704928.2021.1942894
  13. Novais Â., Peixe L. Fourier transform infrared spectroscopy (FT-IR) for food and water microbiology / Application and Integration of Omics-Powered Diagnostics in Clinical and Public Health Microbiology / Eds. Moran-Gilad J., Yagel Y. Cham: Springer, 2021. P. 191. https://doi.org/10.1007/978-3-030-62155-1_11
  14. Chirman D., Pleshko N. Characterization of bacterial biofilm infections with Fourier transform infrared spectroscopy: A review // Appl. Spectrosc. Rev. 2021. V. 56. № 8–10. P. 673. https://doi.org/10.1080/05704928.2020.1864392
  15. Novais Â., Freitas A.R., Rodrigues C., Peixe L. Fourier transform infrared spectroscopy: unlocking fundamentals and prospects for bacterial strain typing // Eur. J. Clin. Microbiol. Infect. Dis. 2019. V. 38. P. 427. https://doi.org/10.1007/s10096-018-3431-3
  16. Quintelas C., Ferreira E.C., Lopes J.A., Sousa C. An overview of the evolution of infrared spectroscopy applied to bacterial typing // Biotechnol. J. 2018. V. 13. № 1. Article 1700449. https://doi.org/10.1002/biot.201700449
  17. Faghihzadeh F., Anaya N.M., Schifman L.A., Oyanedel-Craver V. Fourier transform infrared spectroscopy to assess molecular-level changes in microorganisms exposed to nanoparticles // Nanotechnol. Environ. Eng. 2016. V. 1. Article 1. https://doi.org/10.1007/s41204-016-0001-8
  18. Fahelelbom K.M., Saleh A., Al-Tabakha M.M.A., Ashames A.A. Recent applications of quantitative analytical FTIR spectroscopy in pharmaceutical, biomedical, and clinical fields: A brief review // Rev. Anal. Chem. 2022. V. 41. № 1. P. 21. https://doi.org/10.1515/revac-2022-0030
  19. Baiz C.R., Blasiak B., Bredenbeck J., Cho M., Choi J.-H., Corcelli S.A., Dijkstra A.G., Feng C.-J., Garrett-Roe S., Ge N.-H., Hanson-Heine M.W.D., Hirst J.D., Jansen T.L.C., Kwac K., Kubarych K.J., Londergan C.H., Maekawa H., Reppert M., Saito S., Roy S., Skinner J.L., Stock G., Straub J.E., Thielges M.C., Tominaga K., Tokmakoff A., Torii H., Wang L., Webb L.J., Zanni M.T. Vibrational spectroscopic map, vibrational spectroscopy, and intermolecular interaction // Chem. Rev. 2020. V. 120. № 15. P. 7152. https://doi.org/10.1021/acs.chemrev.9b00813
  20. Yang S., Zhang Q., Yang H., Shi H., Dong A., Wang L., Yu S. Progress in infrared spectroscopy as an efficient tool for predicting protein secondary structure // Int. J. Biol. Macromol. 2022. V. 206. P. 175. https://doi.org/10.1016/j.ijbiomac.2022.02.104
  21. Lorenz-Fonfria V.A. Infrared difference spectroscopy of proteins: From bands to bonds // Chem. Rev. 2020. V. 120. № 7. P. 3466. https://doi.org/10.1021/acs.chemrev.9b00449
  22. Ganim Z., Chung H.S., Smith A.W., DeFlores L.P., Jones K.C., Tokmakoff A. Amide I two-dimensional infrared spectroscopy of proteins // Acc. Chem. Res. 2008. V. 41. № 3. P. 432. https://doi.org/10.1021/ar700188n
  23. Barth A. Infrared spectroscopy of proteins // Biochim. Biophys. Acta (BBA) – Bioenergetics. 2007. V. 1767. № 9. P. 1073. https://doi.org/10.1016/j.bbabio.2007.06.004
  24. Tatulian S.A. Attenuated total reflection Fourier transform infrared spectroscopy: A method of choice for studying membrane proteins and lipids // Biochemistry. 2003. V. 42. № 41. P. 11898. https://doi.org/10.1021/bi034235
  25. Wiercigroch E., Szafraniec E., Czamara K., Pacia M.Z., Majzner K., Kochan K., Kaczor A., Baranska M., Malek K. Raman and infrared spectroscopy of carbohydrates: A review // Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2017. V. 185. P. 317. https://doi.org/10.1016/j.saa.2017.05.045
  26. Lewis R.N.A.H., McElhaney R.N. Membrane lipid phase transitions and phase organization studied by Fourier transform infrared spectroscopy // Biochim. Biophys. Acta (BBA) –Biomembranes. 2013. V. 1828. № 10. P. 2347. https://doi.org/10.1016/j.bbamem.2012.10.018
  27. Yang H., Shi H., Feng B., Wang L., Chen L., Alvarez-Ordóñez A., Zhang L., Shen H., Zhu J., Yang S., Ding C., Prietod M., Yang F., Yu S. Protocol for bacterial typing using Fourier transform infrared spectroscopy // STAR Protocols. 2023. V. 4. № 2. Article 102223. https://doi.org/10.1016/j.xpro.2023.102223
  28. Morais C.L.M., Paraskevaidi M., Cui L., Fullwood N.J., Isabelle M., Lima K.M.G., Martin-Hirsch P.L., Sreedhar H., Trevisan J., Walsh M.J., Zhang D., Zhu Y.-G., Martin F.L. Standardization of complex biologically derived spectrochemical datasets // Nat. Protoc. 2019. V. 14. P. 1546. https://doi.org/10.1038/s41596-019-0150-x
  29. Baker M.J., Trevisan J., Bassan P., Bhargava R., Butler H.J., Dorling K.M., Fielden P.R., Fogarty S.W., Fullwood N.J., Heys K.A., Hughes C., Lasch P., Martin-Hirsch P.L., Obinaju B., Sockalingum G.D., Sulé-Suso J., Strong R.J., Walsh M.J., Wood B.R., Gardner P., Martin F.L. Using Fourier transform IR spectroscopy to analyze biological materials // Nat. Protoc. 2014. V. 9. P. 1771. https://doi.org/10.1038/nprot.2014.110
  30. Ojeda J.J., Dittrich M. Fourier transform infrared spectroscopy for molecular analysis of microbial cells / Microbial Systems Biology: Methods and Protocols. Methods in Molecular Biology. V. 881 / Ed. Navid A. Totowa, NJ, USA: Humana Press, 2012. Ch. 8. P. 187. https://doi.org/10.1007/978-1-61779-827-6_8
  31. Martin F.L., Kelly J.G., Llabjani V., Martin-Hirsch P.L., Patel I.I., Trevisan J., Fullwood N.J., Walsh M.J. Distinguishing cell types or populations based on the computational analysis of their infrared spectra // Nat. Protoc. 2010. V. 5. P. 1748. https://doi.org/10.1038/nprot.2010.133
  32. Bacterial Amyloids: Methods and Protocols. Methods in Molecular Biology. V. 2538 / Eds. Arluison V., Wien F., Marcoleta A. Totowa, NJ, USA: Humana Press, 2022. 337 p. https://doi.org/10.1007/978-1-0716-2529-3
  33. Bridelli M.G. Fourier transform infrared spectroscopy in the study of hydrated biological macromolecules / Fourier Transforms – High-tech Application and Current Trends / Eds. Nikolić G.S., Cakić M.D., Cvetković D.J. Rijeka, Croatia: InTech, 2017. P. 191. https://doi.org/10.5772/66576
  34. Kristiansson O., Lindgren J. Infrared spectroscopic studies of concentrated aqueous electrolyte solutions // J. Phys. Chem. 1991. V. 95. № 3. P. 1488. https://doi.org/10.1021/j100156a085
  35. De Meutter J., Goormaghtigh E. FTIR imaging of protein microarrays for high throughput secondary structure determination // Anal. Chem. 2021. V. 93. № 8. P. 3733. https://doi.org/10.1021/acs.analchem.0c03677
  36. Wilcox K.E., Blanch E.W., Doig A.J. Determination of protein secondary structure from infrared spectra using partial least-squares regression // Biochemistry. 2016. V. 55. № 27. P. 3794. https://doi.org/10.1021/acs.biochem.6b00403
  37. Kafle B., Böcker U., Wubshet S.G., Dankel K., Mage I., Marion O., Afseth N.K. Fourier-transform infrared spectroscopy for characterization of liquid protein solutions: A comparison of two sampling techniques // Vibr. Spectrosc. 2023. V. 124. Article 103490. https://doi.org/10.1016/j.vibspec.2022.103490
  38. Shi H., Sun J., Han R., Ding C., Hu F., Yu S. The strategy for correcting interference from water in Fourier transform infrared spectrum based bacterial typing // Talanta. 2020. V. 208. Article 120347. https://doi.org/10.1016/j.talanta.2019.120347
  39. Gordon S.H., Harry-O’kuru R.E., Mohamed A.A. Elimination of interference from water in KBr disk FT-IR spectra of solid biomaterials by chemometrics solved with kinetic modeling // Talanta. 2017. V. 174. P. 587. https://doi.org/10.1016/j.talanta.2017.06.043
  40. Rahmelow K., Hubner W. Infrared spectroscopy in aqueous solution: Difficulties and accuracy of water subtraction // Appl. Spectrosc. 1997. V. 51. № 2. P. 160. https://opg.optica.org/as/abstract.cfm?URI=as-51-2-160
  41. Holman H.-Y.N., Miles R., Hao Z., Wozei E., Anderson L.M., Yang H. Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy // Anal. Chem. 2009. V. 81. № 20. P. 8564. https://doi.org/10.1021/ac9015424
  42. Kamnev A.A. FTIR spectroscopic studies of bacterial cellular responses to environmental factors, plant-bacterial interactions and signalling // Spectroscopy. 2008. V. 22. P. 83. https://doi.org/10.3233/SPE-2008-0329
  43. Kamnev A.A., Sadovnikova J.N., Tarantilis P.A., Polissiou M.G., Antonyuk L.P. Responses of Azospirillum brasilense to nitrogen deficiency and to wheat lectin: A diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic study // Microb. Ecol. 2008. V. 56. № 4. P. 615. https://doi.org/10.1007/s00248-008-9381-z
  44. Tugarova A.V., Sheludko A.V., Dyatlova Yu.A., Filip’echeva Yu.A., Kamnev A.A. FTIR spectroscopic study of biofilms formed by the rhizobacterium Azospirillum brasilense Sp245 and its mutant Azospirillum brasilense Sp245.1610 // J. Mol. Struct. 2017. V. 1140. P. 142. https://doi.org/10.1016/j.molstruc.2016.12.063
  45. Ojeda J.J., Romero-González M.E., Banwart S.A. Analysis of bacteria on steel surfaces using reflectance micro-Fourier transform infrared spectroscopy // Anal. Chem. 2009. V. 81. P. 6467. https://doi.org/10.1021/ac900841c
  46. Boza Y., Barbin D., Scamparini A.R.P. Effect of spray-drying on the quality of encapsulated cells of Beijerinckia sp. // Process Biochem. 2004. V. 39. № 10. P. 1275. https://doi.org/10.1016/j.procbio.2003.06.002
  47. Hlaing M.M., Wood B.R., McNaughton D., Ying D., Dumsday G., Augustin M.A. Effect of drying methods on protein and DNA conformation changes in Lactobacillus rhamnosus GG cells by Fourier transform infrared spectroscopy // J. Agric. Food Chem. 2017. V. 65. № 8. P. 1724. https://doi.org/10.1021/acs.jafc.6b05508
  48. Alsved M., Holm S., Christiansen S., Smidt M., Rosati B., Ling M., Boesen T., Finster K., Bilde M., Löndahl J., Šantl-Temkiv T. Effect of aerosolization and drying on the viability of Pseudomonas syringae cells // Front. Microbiol. 2018. V. 9. Article 3086. https://doi.org/10.3389/fmicb.2018.03086
  49. Shelud’ko A.V., Mokeev D.I., Evstigneeva S.S., Filip’echeva Yu.A., Burov A.M., Petrova L.P., Katsy E.I. Suppressed biofilm formation efficiency and decreased biofilm resistance to oxidative stress and drying in an Azospirillum brasilense ahpC mutant // Microbiology. 2021. V. 90. P. 56. https://doi.org/10.1134/S0026261721010100
  50. Morgan C.A., Herman N., White P.A., Vesey G. Preservation of micro-organisms by drying; A review // J. Microbiol. Methods. 2006. V. 66. № 2. P. 183. https://doi.org/10.1016/j.mimet.2006.02.017
  51. García A.H. Anhydrobiosis in bacteria: from physiology to applications // J. Biosci. 2011. V. 36. № 5. P. 939. https://doi.org/10.1007/s12038-011-9107-0
  52. Sahu P.K., Gupta A., Singh M., Mehrotra P., Brahmaprakash G.P. Bioformulation and fluid bed drying: A new approach towards an improved biofertilizer formulation / Eco-friendly Agro-biological Techniques for Enhancing Crop Productivity / Eds. Sengar R., Singh A. Singapore: Springer, 2018. P. 47. https://doi.org/10.1007/978-981-10-6934-5_3
  53. França M.B., Panek A.D., Eleutherio E.C.A. Oxidative stress and its effects during dehydration // Compar. Biochem. Physiol. Part A: Mol. Integr. Physiol. 2007. V. 146. № 4. P. 621. https://doi.org/10.1016/j.cbpa.2006.02.030
  54. Kamnev A.A., Tugarova A.V., Shchelochkov A.G., Kovács K., Kuzmann E. Diffuse reflectance infrared Fourier transform (DRIFT) and Mössbauer spectroscopic study of Azospirillum brasilense Sp7: Evidence for intracellular iron(II) oxidation in bacterial biomass upon lyophilisation // Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2020. V. 229. Article 117970. https://doi.org/10.1016/j.saa.2019.117970
  55. Камнев А.А., Тугарова А.В. Биоаналитические применения мессбауэровской спектроскопии // Успехи химии. 2021. Т. 90. № 11. С. 1415. (Kamnev A.A., Tugarova A.V. Bioanalytical applications of Mössbauer spectroscopy // Russ. Chem. Rev. 2021. V. 90. № 11. P. 1415.https://doi.org/10.1070/RCR500610.1070/RCR5006)https://doi.org/10.1070/RCR5006?locatt=label:RUSSIAN
  56. Cпицын А.Н., Уткин Д.В., Кузнецов О.С., Ерохин П.С., Осина Н.А., Кочубей В.И. Применение оптических технологий для изучения и идентификации микроорганизмов (обзор) // Опт. спектроск. 2021. Т. 129. № 1. С. 100. (Spitsyn A.N., Utkin D.V., Kuznetsov O.S., Erokhin P.S., Osina N.A., Kochubei V.I. Application of optical techniques to investigation and identification of microorganisms: A review // Opt. Spectrosс. 2021. V. 129. № 1. P. 135. https://doi.org/10.1134/S0030400X2101005710.1134/S0030400X21010057)https://doi.org/10.21883/OS.2021.01.50446.200-20
  57. Kamnev A.A., Tugarova A.V., Tarantilis P.A., Gardiner P.H.E., Polissiou M.G. Comparing poly-3-hydroxybutyrate accumulation in Azospirillum brasilense strains Sp7 and Sp245: The effects of copper(II) // Appl. Soil Ecol. 2012. V. 61. P. 213. https://doi.org/10.1016/j.apsoil.2011.10.020
  58. Sedlacek P., Slaninova E., Enev V., Koller M., Nebesarova J., Marova I., Hrubanova K., Krzyzanek V., Samek O., Obruca S. What keeps polyhydroxyalkanoates in bacterial cells amorphous? A derivation from stress exposure experiments // Appl. Microbiol. Biotechnol. 2019. V. 103. P. 1905. https://doi.org/10.1007/s00253-018-09584-z
  59. Kamnev A.A., Dyatlova Yu.A., Kenzhegulov O.A., Fedonenko Yu.P., Evstigneeva S.S., Tugarova A.V. Fourier transform infrared (FTIR) spectroscopic study of biofilms formed by the rhizobacterium Azospirillum baldaniorum Sp245: Aspects of methodology and matrix composition // Molecules. 2023. V. 28. № 4. Article 1949. https://doi.org/10.3390/molecules28041949
  60. Kamnev A.A., Dyatlova Yu.A., Kenzhegulov O.A., Vladimirova A.A., Mamchenkova P.V., Tugarova A.V. Fourier transform infrared (FTIR) spectroscopic analyses of microbiological samples and biogenic selenium nanoparticles of microbial origin: Sample preparation effects // Molecules. 2021. V. 26. № 4. Article 1146. https://doi.org/10.3390/molecules26041146
  61. Yang H., Yang S., Kong J., Dong A., Yu S. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy // Nat. Protoc. 2015. V. 10. P. 382. https://doi.org/10.1038/nprot.2015.024
  62. Skvortsova P., Valiullina Yu., Baranova N., Faizullin D., Zuev Yu., Ermakova E. Spectroscopic study of antimicrobial peptides: Structure and functional activity // Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2022. V. 264. Article 120273. https://doi.org/10.1016/j.saa.2021.120273
  63. Mayerhöfer T.G., Pahlow S., Ivanovski V., Popp J. Dispersion related coupling effects in IR spectra on the example of water and Amide I bands // Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2023. V. 288. Article 122115. https://doi.org/10.1016/j.saa.2022.122115
  64. Volova T.G. Polyhydroxyalkanoates — Plastic Materials of the 21st Century: Production, Properties, Application. New York, NY, USA: Nova Science Pub., 2004. 282 p.
  65. Волова Т.Г., Жила Н.О., Шишацкая Е.И., Миронов П.В., Васильев А.Д., Суковатый А.Г., Sinskey A.J. Физико-химические свойства полигидроксиалканоатов различного химического строения // Высокомол. соед. Сер. А. 2013. Т. 55. № 7. С. 775. (Volova T.G., Zhila N.O., Shishatskaya E.I., Mironov P.V., Vasil’ev A.D., Sukovatyi A.G., Sinskey A.J. The physicochemical properties of polyhydroxyalkanoates with different chemical structures // Polym. Sci. Ser. A. 2013. V. 55. P. 427. https://doi.org/10.1134/S0965545X1307008010.1134/S0965545X13070080)https://doi.org/10.7868/S0507547513070210
  66. Kamnev A.A., Tugarova A.V., Dyatlova Yu.A., Tarantilis P.A., Grigoryeva O.P., Fainleib A.M., De Luca S. Methodological effects in Fourier transform infrared (FTIR) spectroscopy: Implications for structural analyses of biomacromolecular samples // Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2018. V. 193. P. 558. https://doi.org/10.1016/j.saa.2017.12.051
  67. Kansiz M., Domínguez-Vidal A., McNaughton D., Lendl B. Fourier-transform infrared (FTIR) spectroscopy for monitoring and determining the degree of crystallization of polyhydroxyalkanoates (PHAs) // Anal. Bioanal. Chem. 2007. V. 388. P. 1207. https://doi.org/10.1007/s00216-007-1337-5
  68. Tugarova A.V., Dyatlova Yu.A., Kenzhegulov O.A., Kamnev A.A. Poly-3-hydroxybutyrate synthesis by different Azospirillum brasilense strains under varying nitrogen deficiency: A comparative in-situ FTIR spectroscopic analysis // Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2021. V. 252. Article 119458. https://doi.org/10.1016/j.saa.2021.119458
  69. Pavan F.A., Junqueira T.L., Watanabe M.D.B., Bonomi A., Quines L.K., Schmidell W., de Aragao G.M.F. Economic analysis of polyhydroxybutyrate production by Cupriavidus necator using different routes for product recovery // Biochem. Eng. J. 2019. V. 146. P. 97. https://doi.org/10.1016/j.bej.2019.03.009
  70. Sigida E.N., Kokoulin M.S., Dmitrenok P.S., Grinev V.S., Fedonenko Yu.P., Konnova S.A. The structure of the O-specific polysaccharide and lipid A of the type strain Azospirillum rugosum DSM-19657 // Russ. J. Bioorg. Chem. 2020. V. 46. № 1. P. 60. https://doi.org/10.1134/S1068162020010112
  71. Younis U., Rahi A.A., Danish S., Ali M.A., Ahmed N., Datta R., Fahad S., Holatko J., Hammerschmiedt T., Brtnicky M., Zarei T., Baazeem A., El Sabagh A., Glick B.R. Fourier transform infrared spectroscopy vibrational bands study of Spinacia oleracea and Trigonella corniculata under biochar amendment in naturally contaminated soil // PLoS ONE. 2021. V. 16. № 6. Article e0253390. https://doi.org/10.1371/journal.pone.0253390
  72. Carbon dioxide / NIST Chemistry WebBook. https://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Type=IR-SPEC&Index=0#IR-SPEC (07.04.2023)
  73. Huq M.A. Green synthesis of silver nanoparticles using Pseudoduganella eburnea MAHUQ-39 and their antimicrobial mechanisms investigation against drug resistant human pathogens // Int. J. Mol. Sci. 2020. V. 21. № 4. Article 1510. https://doi.org/10.3390/ijms21041510
  74. Yang Q., Olaifa K., Andrew F.P., Ajibade P.A., Ajunwa O.M., Marsili E. Assessment of physiological and electrochemical effects of a repurposed zinc dithiocarbamate complex on Acinetobacter baumannii biofilms // Sci. Rep. 2022. V. 12. № 1. Article 11701. https://doi.org/10.1038/s41598-022-16047-z
  75. Das R., Pal A., Paul A.K. Optimization of process parameters for production of poly(3-hydroxybutyrate) by Bacillus pumilus AHSD 04, a seed borne endophyte of oleaginous plant Arachis hypogaea L. // Biointerf. Res. Appl. Chem. 2022. V. 12. № 4. P. 5280. https://doi.org/10.33263/BRIAC124.52805295
  76. Narayanan M., Kandasamy G., Murali P., Kandasamy S., Ashokkumar V., Nasif O., Pugazhendhi A. Optimization and production of polyhydroxybutyrate from sludge by Bacillus cereus categorized through FT-IR and NMR analyses // J. Environ. Chem. Eng. 2021. V. 9. № 1. Article 104908. https://doi.org/10.1016/j.jece.2020.104908
  77. Kalmbach S., Manz W., Wecke J., Szewzyk U. Aquabacterium gen. nov., with description of Aquabacterium citratiphilum sp. nov., Aquabacterium parvum sp. nov. and Aquabacterium commune sp. nov., three in situ dominant bacterial species from the Berlin drinking water system // Int. J. Syst. Evol. Microbiol. 1999. V. 49. № 2. P. 769. https://doi.org/10.1099/00207713-49-2-769
  78. Wang Y., Shu X., Zhou Q., Fan T., Wang T., Chen X., Li M., Ma Y., Ni J., Hou J., Zhao W., Li R., Huang S., Wu L. Selenite reduction and the biogenesis of selenium nanoparticles by Alcaligenes faecalis Se03 isolated from the gut of Monochamus alternatus (Coleoptera: Cerambycidae) // Int. J. Mol. Sci. 2018. V. 19. № 9. Article 2799. https://doi.org/10.3390/ijms19092799
  79. Wang Y., Shu X., Hou J., Lu W., Zhao W., Huang S., Wu L. Selenium nanoparticle synthesized by Proteus mirabilis YC801: an efficacious pathway for selenite biotransformation and detoxification // Int. J. Mol. Sci. 2018. V. 19. № 12. Article 3809. https://doi.org/10.3390/ijms19123809
  80. Wang Y., Shu X., Zhou Q., Fan T., Wang T., Chen X., Li M., Ma Y., Ni J., Hou J., Zhao W., Li R., Huang S., Wu L. Correction: Wang, Y.T., et al. Selenite reduction and the biogenesis of selenium nanoparticles by Alcaligenes faecalis Se03 isolated from the gut of Monochamus alternates (Coleoptera: Cerambycidae). Int. J. Mol. Sci. 2018, 19, 2799 // Int. J. Mol. Sci. 2020. V. 21. № 4. Article 1294. https://doi.org/10.3390/ijms21041294
  81. Wang Y., Shu X., Hou J., Lu W., Zhao W., Huang S., Wu L. Correction: Wang Y.T. et al. Selenium nanoparticle synthesized by Proteus mirabilis YC801: An efficacious pathway for selenite biotransformation and detoxification. Int. J. Mol. Sci. 2018, 19, 3809 // Int. J. Mol. Sci. 2020. V. 21. № 7. Article 2638. https://doi.org/10.3390/ijms21072638

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (364KB)
3.

Download (409KB)
4.

Download (324KB)
5.

Download (264KB)
6.

Download (127KB)
7.

Download (1MB)

Copyright (c) 2023 А.А. Камнев, А.В. Тугарова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies