Selective Adsorbents Based on Imprinted Glucose Oxidase

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A procedure for the synthesis of a highly selective adsorbent based on an imprinted protein (IP), glucose oxidase (GO), and commercially available SiO2 microparticles for the sorption of mycotoxin zearalenone produced by fungi of the Fusarium species is developed. The use of 3D fluorescence spectroscopy for the control of the process of IP purification is proposed for the first time. A possibility of replacing the zearalenone molecule as a template molecule with structural analogues with lower toxicity is assessed. The analytical characteristics of the determination of zearalenone using imprinted GO as a receptor element in enzyme immunoassay are determined: the limit of detection is 5 ng/mL, the linear analytical range is 11–112 ng/mL. High sorption characteristics of the synthesized adsorbent based on IP (sorption capacity—7.6 μg/mg sorbent; imprinting factor—2.5) are shown.

About the authors

P. S. Pidenko

Institute of Chemistry, Chernyshevsky Saratov State University

Email: naburmistrova@mail.ru
410012, Saratov, Russia

K. Yu. Presnyakov

Institute of Chemistry, Chernyshevsky Saratov State University

Email: naburmistrova@mail.ru
410012, Saratov, Russia

D. D. Drozd

Institute of Chemistry, Chernyshevsky Saratov State University

Email: naburmistrova@mail.ru
410012, Saratov, Russia

N. A. Burmistrova

Institute of Chemistry, Chernyshevsky Saratov State University

Author for correspondence.
Email: naburmistrova@mail.ru
410012, Saratov, Russia

References

  1. Mahato D.K., Devi S., Pandhi S., Sharma B., Maurya K.K., Mishra S., Dhawan K., Selvakumar R., Kamle M., Mishra A.K., Kumar P. Occurrence, impact on agriculture, human health, and management strategies of zearalenone in food and feed: A review // Toxins. 2021. V. 13. № 2. P. 92. https://doi.org/10.3390/toxins13020092
  2. Haque M.A., Wang Y., Shen Z., Li X., Saleemi M.K., He C. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review // Microb. Pathog. 2020. V. 142. Article 104095. https://doi.org/10.1016/j.micpath.2020.104095
  3. Gupta R.C., Mostrom M.S., Evans T.J. Zearalenone / Veterinary Toxicology. Elsevier, 2018. P. 1055. https://doi.org/10.1016/B978-0-12-811410-0.00076-3
  4. Taranu I., Braicu C., Marin D.E., Pistol G.C., Motiu M., Balacescu L., Beridan Neagoe I., Burlacu R. Exposure to zearalenone mycotoxin alters in vitro porcine intestinal epithelial cells by differential gene expression // Toxicol. Lett. 2015. V. 232. № 1. P. 310. https://doi.org/10.1016/j.toxlet.2014.10.022
  5. Технический регламент таможенного союза “О безопасности зерна” (ТР ТС 015/2011). clck.ru/33utzE (дата обращения 30.03.2023).
  6. Единые санитарно-эпидемиологические и гигиенические требования к продукции (товарам), подлежащей санитарно-эпидемиологическому надзору (контролю). clck.ru/33uu2q (дата обращения 30.03.2023).
  7. E. U. Commission Regulation (EC) No 1126/2007 of 28 September 2007 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products, 2007. clck.ru/33vPwZ (дата обращения 30.03.2023).
  8. Fleck S.C., Hildebrand A.A., Müller E., Pfeiffer E., Metzler M. Genotoxicity and inactivation of catechol metabolites of the mycotoxin zearalenone // Mycotoxin Res. 2012. V. 28. № 4. P. 267. https://doi.org/10.1007/s12550-012-0143-x
  9. Moreau M., Lescure G., Agoulon A., Svinareff P., Orange N., Feuilloley M. Application of the pulsed light technology to mycotoxin degradation and inactivation: Destruction of mycotoxins by pulsed light // J. Appl. Toxicol. 2013. V. 33. № 5. P. 357. https://doi.org/10.1002/jat.1749
  10. Loi M., Fanelli F., Liuzzi V., Logrieco A., Mulè G. Mycotoxin biotransformation by native and commercial enzymes: Present and future perspectives // Toxins. 2017. V. 9. № 4. P. 111. https://doi.org/10.3390/toxins9040111
  11. Lucci P., David S., Conchione C., Milani A., Moret S., Pacetti D., Conte, L. Molecularly imprinted polymer as selective sorbent for the extraction of zearalenone in edible vegetable oils // Foods. 2020. V. 9. № 10. P. 1439. https://doi.org/10.3390/foods9101439
  12. Gutierrez A.V.R., Hedström M., Mattiasson B. Bioimprinting as a tool for the detection of aflatoxin B1 using a capacitive biosensor // Biotechnol. Reports. 2016. V. 11. P. 12. https://doi.org/10.1016/j.btre.2016.05.006
  13. Pidenko P., Zhang H., Lenain P., Goryacheva I., De Saeger S., Beloglazova N. Imprinted proteins as a receptor for detection of zearalenone // Anal. Chim. Acta. 2018. V. 1040. P. 99. https://doi.org/10.1016/j.aca.2018.07.062
  14. Beloglazova N., Lenain P., Tessier M., Goryacheva I., Hens Z., De Saeger S. Bioimprinting for multiplex luminescent detection of deoxynivalenol and zearalenone // Talanta. 2019. V. 192. P. 169. https://doi.org/10.1016/j.talanta.2018.09.042
  15. Pidenko P., Presnyakov K., Beloglazova N., Burmistrova N. Imprinted proteins for determination of ovalbumin // Anal. Bioanal. Chem. 2022. V. 414. № 18. P. 5609. https://doi.org/10.1007/s00216-022-04009-3
  16. Liu J., Zhang K., Ren X., Luo G., Shen J. Bioimprinted protein exhibits glutathione peroxidase activity // Anal. Chim. Acta. 2004. V. 504. № 1. P. 185. https://doi.org/10.1016/S0003-2670(03)00763-3
  17. Burmistrova N.A., Pidenko P.S., Pidenko S.A., Zacharevich A.M., Skibina Y.S., Beloglazova N.V., Goryacheva I.Y. Soft glass multi-channel capillaries as a platform for bioimprinting // Talanta. 2020. V. 208. Article 120445. https://doi.org/10.1016/j.talanta.2019.120445
  18. Sánchez D.A., Alnoch R.C., Tonetto G.M., Krieger N., Ferreira M.L. Immobilization and bioimprinting strategies to enhance the performance in organic medium of the metagenomic lipase LipC12 // J. Biotechnol. 2021. V. 342. P. 13. https://doi.org/10.1016/j.jbiotec.2021.09.022
  19. Li B., Duan D., Wang J., Li H., Zhang X., Zhao B. Improving phospholipase D activity and selectivity by bio-imprinting-immobilization to produce phosphatidylglycerol // J. Biotechnol. 2018. V. 281. P. 67. https://doi.org/10.1016/j.jbiotec.2018.06.343
  20. Li K., Wang J., He Y., Cui G., Abdulrazaq M.A., Yan Y. Enhancing enzyme activity and enantioselectivity of Burkholderia cepacia lipase via immobilization on melamine-glutaraldehyde dendrimer modified magnetic nanoparticles // Chem. Eng. J. 2018. V. 351. P. 258. https://doi.org/10.1016/j.cej.2018.06.086
  21. Haskell A.K., Sulman A.M., Golikova E.P., Stein B.D., Pink M., Morgan D.G., Lakina N.V., Karpenkov A.Yu., Tkachenko O.P., Sulman E.M., Matveeva V.G., Bronstein L.M. Glucose oxidase immobilized on magnetic zirconia: Controlling catalytic performance and stability // ACS Omega. 2020. V. 5. № 21. P. 12329. https://doi.org/10.1021/acsomega.0c01067
  22. Drozd D.D., Pidenko P.S., Presnyakov K.Y., Strokin P.D., Speranskaya E.S., Goryacheva I.Y. Dihydrolipoic acid coated alloyed quantum dots / Saratov Fall Meeting 2019: Optical and Nano-Technologies for Biology and Medicine / Eds. Tuchin V.V., Genina E.A. 2020. V. 1145714. https://doi.org/10.1117/12.2564393
  23. Mahdizadeh F., Eskandarian M. Glucose oxidase and catalase co-immobilization on biosynthesized nanoporous SiO2 for removal of dissolved oxygen in water: Corrosion controlling of boilers // J. Ind. Eng. Chem. 2014. V. 20. № 4. P. 2378. https://doi.org/10.1016/j.jiec.2013.10.016
  24. Zhou G., Fung K.K., Wong L.W., Chen Y., Renneberg R., Yang S. Immobilization of glucose oxidase on rod-like and vesicle-like mesoporous silica for enhancing current responses of glucose biosensors // Talanta. 2011. V. 84. № 3. P. 659. https://doi.org/10.1016/j.talanta.2011.01.058
  25. Tamer U., Seçkin A.İ., Temur E., Torul H. Fabrication of biosensor based on polyaniline/gold nanorod composite // Int. J. Electrochem. 2011. V. 2011. P. 1. https://doi.org/10.4061/2011/869742
  26. Cai W., Li H.-H., Lu Z.-X., Collinson M.M. Bacteria assisted protein imprinting in sol–gel derived films // Analyst. 2018. V. 143. № 2. P. 555. https://doi.org/10.1039/C7AN01509G
  27. Sakamoto S., Minami K., Nuntawong P., Yusakul G., Putalun W., Tanaka H., Fujii S., Morimoto S. Bioimprinting as a receptor for detection of kwakhurin // Biomolecules. 2022. V. 12. № 8. P. 1064. https://doi.org/10.3390/biom12081064
  28. Ayadi C., Anene A., Kalfat R., Chevalier Y., Hbaieb S. Molecularly imprinted polyaniline on silica support for the selective adsorption of benzophenone-4 from aqueous media // Colloids Surf. A: Physicochem. Eng. Aspects. 2019. V. 567. 2019. P. 32. https://doi.org/10.1016/j.colsurfa.2019.01.042
  29. Janati-Fard F., Housaindokht M.R., Monhemi H. Investigation of structural stability and enzymatic activity of glucose oxidase and its subunits // J. Mol. Catal. B: Enzym. 2016. V. 134. P. 16. https://doi.org/10.1016/j.molcatb.2016.09.008
  30. Drozd D.D., Byzova N.A., Pidenko P.S., Tsyupka D.V., Strokin P.D., Goryacheva O.A., Zherdev A.V., Goryacheva I.Yu., Dzantiev B.B. Luminescent alloyed quantum dots for turn-off enzyme-based assay // Anal. Bioanal. Chem. 2022. V. 414. № 15. P. 4471. https://doi.org/10.1007/s00216-022-04016-4
  31. Nakamura S., Fujiki S. Comparative studies on the glucose oxidases of Aspergillus Niger and Penicillium amagasakiense // J. Biochem. 1968. V. 63. № 1. P. 51. https://doi.org/10.1093/oxfordjournals.jbchem.a128747
  32. Yiu H.H.P., Wright P.A. Enzymes supported on ordered mesoporous solids: A special case of an inorganic–organic hybrid // J. Mater. Chem. 2005. V. 15. № 35–36. P. 3690. https://doi.org/10.1039/b506090g

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (442KB)
3.

Download (87KB)
4.

Download (99KB)
5.

Download (68KB)

Copyright (c) 2023 П.С. Пиденко, К.Ю. Пресняков, Д.Д. Дрозд, Н.А. Бурмистрова

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».