Adaptive Calibration in Electrothermal Atomic Absorption Spectrometry

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A method is developed for determining concentrations in Zeeman electrothermal atomic absorption spectrometry based on the conversion of the transformation function of an atomic absorption spectrometer into a calibration dependence adapted to the matrix of the analyzed sample. The transformation function is expressed as a one-parameter saturation function, which is an integral optical characteristic of the spectrometer, independent of the composition of the analyzed sample. The algorithm of the method includes measurement of the analytical signals of an analyzed sample and a same sample with a known additive of the analyte and calculation of the matrix coefficient and the desired concentration of the analyte in the analyzed sample from these signals. The adaptive calibration method is tested for As, Au, Cd, Cu, Mo, Pd, Pb, Mo, Pd, Pb, Ti, V. The relative systematic error in determining the concentration of an element in the range of measuring the absorbance of atomic vapor does not exceed 10%. The analytical ranges for the elements exceed three orders of magnitude.

About the authors

Yu. M. Sadagov

Cortec Ltd.

Email: sadagov@yandex.ru
19602, Moscow, Russia

A. Yu. Sadagov

Cortec Ltd.

Author for correspondence.
Email: sadagov@yandex.ru
19602, Moscow, Russia

References

  1. Основы аналитической химии. В 2-х тт. Т. 1 / Под ред. Золотова Ю.А. М.: Издательский центр “Академия”, 2012. 384 с.
  2. Дворкин В.И. Метрология и обеспечение качества химического анализа. М.: Техносфера, 2020. 317 с.
  3. ГОСТ Р 52361-2018. Контроль объекта аналитический. Термины и определения. М.: Стандартинформ, 2018. 11 с.
  4. De Loos-Vollebregt M.T.C., de Galan L. Stray light in Zeeman and pulsed hollow cathode lamp atomic absorption spectrometry // Spectrochim. Acta B. 1986. V. 41. № 6. P. 597.
  5. Садагов Ю.М., Левин А.Д., Бирюкова И.В. Функции преобразования в электротермической атомно-абсорбционной спектрометрии // Измерительная техника. 2021. № 4. С. 63. https://doi.org/10.32446/0368-1025it.2021-4-63-67
  6. Садагов Ю.М., Тютюник О.А., Кубракова И.В., Садагов А.Ю. Учет матричных эффектов при спектрометрическом определении следов элементов с использованием метода одной стандартной добавки // Журн. аналит. химии. 2022. Т. 77 № 6. С. 563.
  7. Frenich A.G., Vidal J.L.M., Moreno J.L.F., Romero-Gonzalez R. Compensation for matrix effects in gas chromatography–tandem mass spectrometry using a single point standard addition // J. Chromatogr. A. 2009. V. 1216. № 2. P. 4798.
  8. Yasuda K., Koizumi H., Ohishi K, Noda T. Zeeman effect atomic absorption // Prog. Anal. Atom. Spectrosc. 1980. V. 3. № 4. P. 299.
  9. Sadagoff Yu.M. A longitudinally heated graphite furnace for a longitudinal magnetic field. Formation of absorbance signals // Spectrochim. Acta B. 1997. V. 52. № 9–10. P. 1395.
  10. Садагов Ю.М., Лаптев С.А. Формирование аналитических сигналов в графитовых печах // Журн. аналит. химии. 1998. Т. 53. № 10. С. 1051.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (49KB)
3.

Download (37KB)
4.

Download (40KB)

Copyright (c) 2023 Ю.М. Садагов, А.Ю. Садагов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies