A Comparison of the Peak-to-Background Method and an Empirical Correction of the Results in the Energy-Dispersive Electron Probe Quantitative Analysis of Powder Materials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Several algorithms for correcting the results of the quantitative electron probe elemental analysis of samples with rough surfaces and powder materials are compared. The effectiveness of the methods was estimated by the deviations of corrected weight fractions of elements from the results obtained for reference samples, i.e., polished plates of test materials. Using the most commonly used peak-to-background method, the intensity of continuous X-ray radiation was calculated by several methods. One method involved the analytical calculation of the bremsstrahlung generation function and the correction of the width and shape of the bremsstrahlung spectrum under the diagnostic lines of the elements based on the experimental spectra. The second, more rapid method was based on the direct simulation of the continuous radiation background by Monte Carlo methods in the NIST DTSA-II software environment. The last method of calculating the background of continuous radiation yielded smaller deviations of the results of quantitative analysis from the results obtained for reference samples. An empirical adjustment method was also tested. It was based on experimentally revealed patterns in the energy-dispersive spectra of powder samples. An analysis of the experimental data revealed an empirical dependence relating the parameters of characteristic photons to the value of accelerating voltage required to obtain the proper ratio of the weight concentrations of elements in the analysis of powdered materials. The proposed empirical method for correcting the results of analyses of powder samples based on the totality of the measurements performed is more effective.

About the authors

D. E. Pukhov

Valiev Institute of Physics and Technology, Yaroslavl Branch, Russian Academy of Sciences

Author for correspondence.
Email: puhov2005@yandex.ru
150007, Yaroslavl, Russia

References

  1. Armstrong J.T., Buseck P.R. Quantitative chemical analysis of individual microparticles using the electron microprobe: Theoretical // Anal. Chem. 1975. V. 47. № 13. P. 2178. https://doi.org/10.1021/ac60363a033
  2. Goldstein J.I., Newbury D.E., Michael J.R., Ritchie N.W.M., Scott J.H.J., Joy D.C. Scanning electron microscopy and X-ray microanalysis. 4rd Ed. New York: Springer, 2018. 550 p. https://doi.org/10.1007/978-1-4939-6676-9
  3. Newbury D.E. Electron probe microanalysis of rough targets: Testing the peak-to-local background method // Scanning. 2004. V. 26. № 3. P. 103. https://doi.org/10.1002/sca.4950260302
  4. Small J.A. The analysis of particles at low accelerating voltages (≤10 kV) with energy dispersive X-ray spectroscopy (EDS) // J. Res. Natl. Inst. Stan. 2002. V. 107. № 6. P. 555. https://doi.org/10.6028/jres.107.047
  5. Buseck P.R. A general characteristic fluorescence correction for the quantitative electron microbeam analysis of thick specimens, thin films and particles // X-Ray Spectrom. 1985. V. 14. № 4. P. 172. https://doi.org/10.1002/xrs.1300140408
  6. Newbury D.E., Ritchie N.W.M. Quantitative SEM/EDS, step 1: What constitutes a sufficiently flat specimen? // Microsc. Microanal. 2013. V. 19. № 2. P. 1244. https://doi.org/10.1017/s1431927613008210
  7. Bayazid S.M., Yuan Y., Gauvin R. Study of the peak to background (P/B) method behavior as a function of take-off angle, tilt angle, particle sze, and beam energy // Scanning. 2021. V. 7. Article ID 8070721. https://doi.org/10.1155/2021/8070721
  8. Hovington P., Lagace M., Rodrigue L. X-ray analysis of rough surfaces at low energy // Microsc. Microanal. 2002. V. 8. № 2. P. 1472. https://doi.org/10.1017.S1431927602103990
  9. Newbury D.E., Ritchie N.W.M. Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS) // J. Mater. Sci. 2015. V. 50. № 2. P. 493. https://doi.org/10.1007/s10853-014-8685-2
  10. Armstrong J.T. Quantitative elemental analysis of individual microparticles with electron beam instruments / Electron Probe Quantification / Eds. Heinrich K.J.F., Newbury D.E. N.Y.: Plenum Press, 1991. P. 261. https://doi.org/10.1007/978-1-4899-2617-315
  11. Gauvin R., Hovington P., Drouin D. Quantification of spherical inclusions in the scanning electron microscope using Monte Carlo simulations // Scanning. 1995. V. 17. № 4. P. 202. https://doi.org/10.1002/sca.4950170401
  12. Storms H.M., Janssens K.H., Torok S.B., Van Grieken R.E. Evaluation of the Armstrong-Buseck correction for automated electron probe X-ray microanalysis of particles // X-Ray Spectrom. 1989. V. 18. P. 45. https://doi.org/10.1002/xrs.13001820
  13. Sanchez D., Llovet X., Graciani R., Salvat F. A tracking algorithm for Monte Carlo simulation of surface roughness in EPMA measurements / IOP Conf. Ser.: Mater. Sci. Eng., 2018. V. 304. P. 1. https://doi.org/10.1088/1757-899x/304/1/012015
  14. Paoletti A., Bruni B.M., Gianfagna A., Mazziotti–Tagliani S., Pacella A. Quantitative energy dispersive X-ray analysis of submicrometric particles using a scanning electron microscope // Microsc. Microanal. 2011. V. 12. № 5. P. 710. https://doi.org/10.1017/s1431927611000432
  15. Ritchie N.W.M. Using DTSA-II to simulate and interpret energy dispersive spectra from particles // Microsc. Microanal. 2010. V. 16. № 3. P. 248. https://doi.org/10.1017/s1431927610000243
  16. Trincavelli J.C., Van Grieken R.E. Peak-to-background method for standardless electron microprobe analysis of particles // X-Ray Spectrom. 1994. V. 23. P. 254. https://doi.org/10.1002/xrs.1300230605
  17. Labar J.L., Torok S.B. A Peak-to-background method for electron-probe X-ray microanalysis applied to individual small particles // X-Ray Spectrom. 1992. V. 21. P. 183. https://doi.org/10.1002/xrs.1300210407
  18. Castellano G., Osanb J., Trincavelli J.C. Analytical model for the bremsstrahlung spectrum in the 0.25–20 keV photon energy range // Spectrochim. Acta B. 2004. V. 59. P. 313. https://doi.org/10.1016/j.sab.2003.11.008
  19. Limandri S.P., Bonetto R.D., Josa V.G, Carreras A.C., Trincavelli J.C. Standardless quantification by parameter optimization in electron probe microanalysis // Spectrochim. Acta B. 2012. V. 77. P. 44. https://doi.org/10.1016/ j.sab.2012.08.003
  20. Ding Z.-J., Shimizu R., Obori K. Monte Carlo simulation of x-ray spectra in electron probe microanalysis: Comparison of continuum with experiment // J. Appl. Phys. 1994. V. 76. № 11. P. 7180. https://doi.org/10.1063/1.357998
  21. Eggert F. The P/B-method, about 50 years a hidden champion // Microsc. Microanal. 2018. V. 24. № 1. P. 734. https://doi.org/10.1017/s1431927618004166
  22. Small J.A., Leigh S.D., Newbury D.E., Myklebust R.L. Modeling of the bremsstrahlung radiation produced in pure-element targets by 10–40 keV electrons // J. Appl. Phys. 1987. V. 61. № 2. P. 459. https://doi.org/10.1063/1.338245
  23. Duncumb P., Barkshire I.R., Statham P.J. Improved X-ray spectrum simulation for electron microprobe analysis // Microsc. Microanal. 2001. V. 7. № 4. P. 341. https://doi.org/10.1007/s10005-001-0010-6
  24. Riveros J.A., Castellano G., Trincavelli J.C. Comparison of φ(ρz) curve models in EPMA // Mikrochim. Acta. 1992. V. 12. P. 99. https://doi.org/10.1007/978-3-7091-6679-6-7
  25. Drouin D., Couture A.R., Joly D., Tastet X., Aimez V., Gauvin R. CASINO V2.42 – A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users // Scanning. 2007. V. 29. № 3. P. 92. https://doi.org/10.1002/sca.20000
  26. Drouin D., Hovington P., Gauvin R. CASINO: A new Monte Carlo code in C language for electron beam interaction – Part II: Tabulated values of Mott cross section // Scanning. 1997. V. 19. № 1. P. 20. https://doi.org/10.1002/sca.4950190103
  27. Hovington P., Drouin D., Gauvin R. CASINO: A new Monte Carlo code in C language for electron beam interaction – Part I: Description of the program // Scanning. 1997. V. 19. № 1. P. 1. https://doi.org/10.1002/sca.4950190101
  28. Hovington P., Drouin D., Gauvin R., Joy D.C., Evans N. CASINO: A new Monte Carlo code in C language for electron beam interaction – Part III: Stopping power at low energies // Scanning. 1997. V. 19. № 1. P. 29. https://doi.org/10.1002/sca.4950190104
  29. Ritchie N.W.M. Spectrum simulation in DTSA-II // Microsc. Microanal. 2009. V. 15. № 5. P. 454. https://doi.org/10.1007/s10853-014-8685-2
  30. Newburry D.E., Ritchie N.W.M. Measurement of trace constituents by electron-excited X-ray microanalysis with Energy-dispersive spectrometry // Microsc. Microanal. 2016. V. 22. № 3. P. 520. https://doi.org/10.1017/s1431927616000738
  31. Newburry D.E., Ritchie N.W.M. Quantitative electron-excited X-ray microanalysis of borides, carbides, nitrides, oxides, and fluorides with scanning electron microscopy/silicon drift detectore-dispersive spectrometry (SEM/SDD-EDS) and NIST DTSA-II // Microsc. Microanal. 2015. V. 21. № 5. P. 1327. https://doi.org/10.1017/s1431927615014993
  32. Пухов Д.Э., Лаптева А.А. Способ корректировки результатов электронно-зондового энергодисперсионного элементного анализа порошковых материалов // Журн. аналит. химии. 2022. Т. 77. № 9. С. 837. (Pukhov D.E., Lapteva A.A. Method for correcting the results of energy-dispersive electron probe elemental analysis of powder materials // J. Anal. Chem. 2022. V. 77. № 9. P. 1162. https://doi.org/10.1134/s106193482209011810.1134/s1061934822090118)https://doi.org/10.31857/s0044450222090110

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (385KB)
3.

Download (93KB)
4.

Download (190KB)
5.

Download (116KB)
6.

Download (214KB)
7.

Download (242KB)

Copyright (c) 2023 Д.Э. Пухов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies