Novel Mixed-Mode Adsorbents for HPLC Based on Different Substrates Modified with Eremomycin

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New adsorbents based on silica and polystyrene–divinylbenzene (PS–DVB) for hydrophilic interaction liquid chromatography (HILIC) with eremomycin in functional layers were obtained. The chromatographic properties of the new adsorbents were assessed using the Tanaka test for hydrophilic stationary phases and by studying the retention of substances of various classes in HILIC, chiral, and reversed-phase chromatography modes. It was shown that the use of eremomycin to create functional layers leads to an increase in the hydrophilicity of the adsorbents on different types of substrates and ensures the shielding of their charge. Eleven nitrogenous bases, nucleosides with an efficiency of up to 25 000 tp/m, or seven vitamins with an efficiency of up to 40 000 tp/m can be separated on a modified sorbent based on aminopropyl silica, and three different HPLC modes can be implemented on the sorbent with eremomycin based on PS–DVB.

About the authors

N. Yu. Chikurova

Department of Chemistry, Lomonosov Moscow State University

Email: chernobrovkina@analyt.chem.msu.ru
119991, Moscow, Russia

D. S. Prosuntsova

Department of Chemistry, Lomonosov Moscow State University

Email: chernobrovkina@analyt.chem.msu.ru
119991, Moscow, Russia

A. N. Stavrianidi

Department of Chemistry, Lomonosov Moscow State University

Email: chernobrovkina@analyt.chem.msu.ru
119991, Moscow, Russia

S. M. Staroverov

Department of Chemistry, Lomonosov Moscow State University

Email: chernobrovkina@analyt.chem.msu.ru
119991, Moscow, Russia

I. A. Ananieva

Department of Chemistry, Lomonosov Moscow State University

Email: chernobrovkina@analyt.chem.msu.ru
119991, Moscow, Russia

A. D. Smolenkov

Department of Chemistry, Lomonosov Moscow State University

Email: chernobrovkina@analyt.chem.msu.ru
119991, Moscow, Russia

A. V. Chernobrovkina

Department of Chemistry, Lomonosov Moscow State University

Author for correspondence.
Email: chernobrovkina@analyt.chem.msu.ru
119991, Moscow, Russia

References

  1. Buszewski B., Noga S. Hydrophilic interaction liquid chromatograpy (HILIC) – A powerful separation technique // Anal. Bioanal. Chem. 2012. V. 402. P. 231.
  2. Staroverov S.M., Kuznetsov M.A., Nesterenko P.N., Vasiarov G.G., Katrukha G.S, Fedorova G.B. New chiral stationary phase with macrocyclic glycopeptide antibiotic eremomycin chemically bonded to silica // J. Chromatogr. A. 2006. V. 1108. P. 263.
  3. Kuznetsov M.A., Nesterenko P.N., Vasiyarov G.G., Staroverov S.M. Sorbents with immobilized glycopeptide antibiotics for separating optical isomers by high-performance liquid chromatography // Appl. Biochem. Microbiol. 2006. V. 42. P. 536.
  4. Кузнецов М.А., Нестеренко П.Н., Васияров Г.Г., Староверов С.М. Высокоэффективная жидкостная хроматография энантиомеров α-аминокислот на силикагеле с имообилизованным эремомицином // Журн. аналит. химии. 2008. Т. 63. № 1. С. 64. (Kuznetsov M.A., Nesterenko P.N., Vasiyarov G.G., and Staroverov S.M. High-performance liquid chromatography of α-amino acid enantiomers on eremomycinmodified silica // J. Anal. Chem. 2008. V. 63. № 1. P. 57.)
  5. Шаповалова Е.Н., Федорова И.А., Ананьева И.А., Шпигун О.А. Макроциклические антибиотики как хиральные селекторы в высокоэффективной жидкостной хроматографии и капиллярном электрофорезе // Журн. аналит. химии. 2018. Т. 73. № 11. С. 1. (Shapovalova E.N., Fedorova I.A., Ananieva I.A., Shpigun O.A. Macrocyclic antibiotics as chiral selectors in high-performance liquid chromatography and capillary electrophoresis // J. Anal. Chem. 2018. V. 73. № 11. P. 1.)
  6. Li Y., Zhu N., Chen T., Wei M., Ma Y. Stationary phase based on β-Cyclodextrin and poly(N-isopropylacrylamide) for HILIC and RPLC // Chromatographia. 2016. V. 79. P. 29.
  7. Guo Z., Jin Y., Liang T., Liu Y., Xu Q., Liang X., Lei A. Synthesis, chromatographic evaluation and hydrophilic interaction/reversed-phase mixed-mode behavior of a “Click β-cyclodextrin” stationary phase // J. Chromatogr. A. 2009. V. 1216. P. 257.
  8. Chikurova N.Yu., Shemiakina A.O., Shpigun O.A., Chernobrovkina A.V. Multicomponent Ugi reaction as a tool for fast and easy preparation of stationary phases for hydrophilic interaction liquid chromatography. Part I: The influence of attachment and spacing of the functional ligand obtained via the Ugi reaction // J. Chromatogr. A. 2022. V. 1666. Article 462804.
  9. Popov A.S., Spiridonov K.A., Uzhel A.S., Smolenkov A.D., Chernobrovkina A.V., Zatirakha A.V. Prospects of using hyperbranched stationary phase based on poly(styrene-divinylbenzene) in mixed-mode chromatography // J. Chromatogr. A. 2021. V. 1642. Article 462010.
  10. Zatirakha A.V., Smolenkov A.D., Pirogov A.V., Nesterenko P.N., Shpigun O.A. Preparation and characterization of anion exchangers with dihydroxy-containing alkyl substitutes in the quaternary ammonium functional groups // J. Chromatogr. A. 2014. V. 1323. P. 104.
  11. Uzhel A.S., Zatirakha A.V., Shchukina O.I., Smolenkov A.D., Shpigun O.A. Covalently-bonded hyperbranched poly(styrene-divinylbenzene)-based anion exchangers for ion chromatography // J. Chromatogr. A. 2016. V. 1470. P. 97.
  12. Uzhel A.S, Zatirakha A.V., Smirnov K.N., Smolenkov A.D., Shpigun O.A. Anion exchangers with negatively charged functionalities in hyperbranched ion-exchange layers for ion chromatography // J. Chromatogr. A. 2017. V. 1482. P. 56.
  13. Uzhel A.S., Gorbovskaya A.V., Zatirakha A.V., Smolenkov A.D., Shpigun O.A. Manipulating selectivity of covalently-bonded hyperbranched anion exchangers toward organic acids. Part I: Influence of primary amine substitutes in the internal part of the functional layer // J. Chromatogr. A. 2018. V. 1589. P. 65.
  14. Попов А.С. Дис. … канд. хим. наук. М.: МГУ им. М.В. Ломоносова, 2022. 175.
  15. Dolci M. Chromatographic Characterization of Stationary Phases for Hydrophilic Interaction Liquid Chromatography. Runcorn, Cheshire, UK: Thermo Fisher Scientific, 2013.
  16. Kawachi Y., Ikegami T., Takubo H., Ikegami Y., Miyamoto M., Tanaka N. Chromatographic characterization of hydrophilic interaction liquid chromatography sta-tionary phases: Hydrophilicity, charge effects, structural selectivity, and separation efficiency // J. Chro-matogr. A. 2011. V. 1218. P. 5903.
  17. Karatapanis A.E., Fiamegos Y.C., Stalikas C.D. HILIC separation and quantitation of water-soluble vitamins using diol column // J. Sep. Sci. 2009. V. 32. P. 909.
  18. Чернобровкина А.В., Смоленков А.Д., Шпигун О.А. Гидрофильная хроматография – перспективный метод определения полярных веществ // Лаборатория и производство. Т. 4. № 4. С. 76.
  19. Marrubini G., Pedrali A., Hemstrom P., Jonsson T., Massolini G. Column comparison and method development for the analysis of short-chain carboxylic acids by zwitterionic hydrophilic interaction liquid chromatography with UV detection // J. Sep. Sci. 2013. V. 36. P. 3493.
  20. Chen Y., Bicker W., Wu J., Xie M., Lindner W. Simultaneous determination of 16 nucleosides and nucleobases by hydrophilic interaction chromatography and its application to the quality evaluation of Ganoderma // J. Agric. Food Chem. 2012. V. 60. P. 4243.
  21. Tang T., Guo D., Huang S. Preparation and chromatographic evaluation of the hydrophilic interaction chromatography stationary phase based on nucleosides or nucleotides // Anal. Methods. 2021. V. 13. P. 419.

Supplementary files


Copyright (c) 2023 Н.Ю. Чикурова, Д.С. Просунцова, А.Н. Ставрианиди, С.М. Староверов, И.А. Ананьева, А.Д. Смоленков, А.В. Чернобровкина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies