A Comparative Study of the Dynamic Fractionation of Rare-Earth Elements in Soils Using a Rotating Coiled Column and a Microcolumn

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Rare earth elements (REEs) are currently used in fertilizers, but their behavior in the soil–plant system remains poorly studied. The assessment of the binding of REEs to various organomineral phases of soils remains an important task. Using soddy-podzolic soil and typical chernozem as examples, we performed a comparative study of the dynamic fractionation of REEs in a rotating coiled column (RCC) and a microcolumn (MC). We isolated the exchangeable fraction, specifically adsorbed fraction, and fractions bound to manganese oxides, bound to organic matter, and bound to amorphous and weakly crystallized iron and aluminum oxides using, 0.05 M Ca(NO3)2, 0.43 M CH3COOH, and a 0.1 M NH2OH·HCl solution (pH 3.6), a 0.1 M K4P2O7 solution (pH 11.0), and a 0.1 M (NH4)2C2O4 solution (pH 3.2), respectively. Concentrations of elements in the initial samples and eluate fractions were determined by atomic emission spectrometry and inductively coupled plasma mass spectrometry. The results suggest that the main extractable REE form (up to 40% of the total content) is provided by organometallic complexes extracted with a 0.1 M K4P2O7 solution. For chernozem (soils with a high content of organic matter), fractionation in the RCC and MC yielded comparable results. For soddy-podzolic soil, some differences were observed in the isolation of the first three fractions: exchangeable, specifically adsorbed, and bound to manganese oxides. Both RCC and MC can be successfully used for the dynamic fractionation of REE in soils; however, it is preferable to use an MC in analyzing many samples as a simpler and more affordable device.

About the authors

Yu. N. Shatrova

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: shatrovajun@gmail.com
119991, Moscow, Russia

R. Kh. Dzhenloda

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: shatrovajun@gmail.com
119991, Moscow, Russia

N. N. Fedyunina

National University of Science and Technology “MISiS”

Email: shatrovajun@gmail.com
119049, Moscow, Russia

V. K. Karandashev

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences; Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences

Email: shatrovajun@gmail.com
119991, Moscow, Russia; 142432, Chernogolovka, Moscow oblast, Russia

P. S. Fedotov

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: shatrovajun@gmail.com
119991, Moscow, Russia

References

  1. Hu Z., Haneklaus S., Sparovek G., Schnug E. Rare earth elements in soils // Commun. Soil Sci. Plant Anal. 2006. V. 37. P. 1381.
  2. Белюченко И.С., Муравьев Е.И. Влияние отходов промышленного и сельскохозяйственного производства на физико-химические свойства почв // Экол. вестник Сев. Кавказа. 2009. Т. 5. № 1. С. 84.
  3. Федотов П.С. Вращающиеся спиральные колонки в вещественном анализе природных образцов: динамическое фракционирование форм элементов в почвах, илах и донных отложениях // Журн. аналит. химии. 2012. Т. 67. № 5. С. 453. (Fedotov P.S. Rotating coiled columns in the speciation analysis of natural samples: Dynamic fractionation of element forms in soils, sludges, and bottom sediments // J. Anal. Chem. 2012. V. 67. № 5. P. 399.)
  4. Filgueiras A.V., Lavilla I., Bendicho C. Chemical sequential extraction for metal partitioning in the environmental solid samples // J. Environ. Monit. 2002. V. 4. № 6. P. 823.
  5. Tessier A., Campbell P.G.C., Bisson M. Sequential extraction procedure for the speciation of particulate trace // Anal. Chem. 1979. V. 51. № 7. P. 844.
  6. McLaren R.G., Crawford D.W. Studies on soil copper. 1. The fractionation of copper in soils // J. Soil Sci. 1973. V. 24. № 2. P. 172.
  7. Rauret G., Lґopez-Saґnchez J.F., Sahuquillo A., Rubio R., Davidson C., Ure A., Quevauviller P. Improvement of the BCR three-step sequential extraction procedure prior to the certification of new sediment and soil reference materials // J. Environ. Monit. 1999. V. 1. P. 57.
  8. Федотов П.С., Спиваков Б.Я. Статические и динамические методы фракционирования форм элементов в почвах, илах и донных отложениях // Успехи химии. 2008. Т. 77. № 7. С. 690. (Fedotov P.S., Spivakov B.Ya. Fractionation of elements in soils, sludges and sediments: Batch and dynamic methods // Russ. Chem. Rev. 2008. V. 77. № 7. P. 649.)
  9. Rosende M., Savonina E.Yu., Fedotov P.S., Miro M., Cerda V., Wennrich R. Dynamic fractionation of trace metals in soil and sediment samples using rotating coiled column extraction and sequential injection microcolumn extraction: A comparative study // Talanta. 2009. V. 79. P. 1081.
  10. Savonina E.Yu., Fedotov P.S., Wennrich R. Continuous-flow fractionation of selenium in contaminated sediment and soil samples using rotating coiled column and microcolumn extraction // Talanta. 2012. V. 88. P. 369.
  11. Федотов П.С., Савонина Е.Ю., Спиваков Б.Я., Веннрих Р. Возможности гармонизации методов динамического фракционирования форм элементов в почвах и донных отложениях // Журн. аналит. химии. 2012. Т. 67. № 10. С. 948.
  12. Fedotov P.S., Rogova O.B., Dzhenloda R.Kh., Karandashev V.K. Metal–organic complexes as a major sink for rare earth elements in soils // Environ. Chem. 2019. V. 16. № 5. P. 323.
  13. Rogova O.B., Fedotov P.S., Dzhenloda R.K., Karandashev V.K. Fractionation and fixation of rare earths elements in soils: Effect of spiking with lanthanum, cerium, and neodymium chlorides // J. Rare Earths. 2022. V. 40. № 1. P. 143.
  14. Fedotov P.S., Savonina E.Yu., Wennrich R., Ladonin D.V. Studies on trace and major elements association in soils using continuous-flow leaching in rotating coiled columns // Geoderma. 2007. V. 142. P. 58.
  15. Дампилова Б.В., Федотов П.С., Дженлода Р.Х., Федюнина Н.Н., Карандашев В.К. Сравнительное изучение методов оценки подвижности форм элементов в загрязненных почвах и техногенных песках в условиях статического и динамического экстрагирования // Журн. аналит. химии. 2017. Т. 72. № 10. С. 944.
  16. Карандашев В.К., Хвостиков В.А., Носенко С.Ю., Бурмий Ж.П. Использование высокообогащенных стабильных изотопов в массовом анализе образцов горных пород, грунтов, почв и донных отложений методом масс-спектрометрии с индуктивно-связанной плазмой // Заводск. лаборатория. Диагностика материалов. 2016. Т. 82. № 7. С. 6.
  17. Ладонин Д.В. Формы соединений тяжёлых металлов в техногенно-загрязнённых почвах. Дис. … докт. биол. наук. Москва: МГУ им. М.В. Ломоносова, 2016. 383 с.
  18. Neaman A., Mouele F., Trolard F., Bourrie G. Improved methods for selective dissolution of Mn oxides: Applications for studying trace element associations // Appl. Geochem. 2004. V. 19. P. 973.
  19. Clay Mineralogy: Spectroscopic and Chemical Determinative Methods / Ed. Wilson M.J. Dordrecht: Springer, 1994. 367 p.
  20. Шатрова Ю.Н., Дженлода Р.Х., Федюнина Н.Н., Карандашев В.К., Федотов П.С. Сравнительное изучение схем фракционирования форм редкоземельных элементов в почвах в режиме динамического экстрагирования // Журн. аналит. химии. 2021. Т. 76. № 10. С. 906.
  21. Основы аналитической химии / Под ред. Золотова Ю.А. М.: Издательский центр “Академия”, 2012. 384 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (732KB)
3.

Download (300KB)

Copyright (c) 2023 Ю.Н. Шатрова, Р.Х. Дженлода, Н.Н. Федюнина, В.К. Карандашев, П.С. Федотов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies