Determination of Lignin, Cellulose, and Hemicellulose in Plant Materials by FTIR Spectroscopy

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A procedure for determining concentrations of lignin, cellulose, and hemicellulose in plant materials using Fourier-transform IR spectroscopy in the middle spectral region was developed and tested. The procedure is based on the use of calibration functions reflecting the dependence of the intensity of analytical absorption bands on the concentration of lignin (1512 cm–1) and cellulose (1450 cm–1) in model samples; for hemicellulose, indirect correlations were used. The model samples were ternary mixtures consisting of lignin, bacterial cellulose, and hemicellulose in various proportions. The proposed method was tested on a wide range of plant biomass samples; it demonstrated adequate precision (RSD no more than 4%). The accuracy of the procedure for determining the main components of plant biomass (lignin, cellulose, and hemicellulose) was demonstrated using the standard addition method.

作者简介

S. Kostryukov

National Research Mordovian State University

Email: kostryukov_sg@mail.ru
430005, Saransk, Russia

Kh. Matyakubov

National Research Mordovian State University

Email: kostryukov_sg@mail.ru
430005, Saransk, Russia

Yu. Masterova

National Research Mordovian State University

Email: kostryukov_sg@mail.ru
430005, Saransk, Russia

A. Kozlov

National Research Mordovian State University

Email: kostryukov_sg@mail.ru
430005, Saransk, Russia

M. Pryanichnikova

National Research Mordovian State University

Email: kostryukov_sg@mail.ru
430005, Saransk, Russia

A. Pynenkov

National Research Mordovian State University

Email: kostryukov_sg@mail.ru
430005, Saransk, Russia

N. Khluchina

National Research Mordovian State University

编辑信件的主要联系方式.
Email: kostryukov_sg@mail.ru
430005, Saransk, Russia

参考

  1. Оболенская А.В., Ельницкая З.П., Леонович А.А. Лабораторные работы по химии древесины и целлюлозы. М.: Экология, 1991. 320 с.
  2. Baeza J., Freer J. Chemical characterization of wood and its components / Wood and Cellulosic Chemistry / Eds. Hon D.N.S., Shiraishi D. N. S. Boca Raton: CRC Press, 2000. P. 275. https://doi.org/10.1201/9781482269741
  3. Tian X., Fang Z., Smith R.L., Wu Z., Liu M. Properties, chemical characteristics and application of lignin and its derivatives / Production of Biofuels and Chemicals from Lignin / Eds. Fang Zh., Smith R.L. Singapore: Springer, 2016. P. 3. https://doi.org/10.1007/978-981-10-1965-4_1
  4. Tappi T222 Om-02. Acid-insoluble lignin in wood and pulp. TAPPI Test Methods, 2006. https://www.tappi.org/content/SARG/T222.pdf (18.11.2022).
  5. Castillo R.P., Peña-Farfal C., Neira Y., Freer J. Advances in analytical methodologies based on infrared spectroscopy for analysis of lignocellulosic materials: From classic characterization of functional groups to FT-IR imaging and micro-quantification / Fourier Transform Infrared Spectroscopy (FTIR): Methods, Analysis and Research Insights / Ed. Moore E. N.Y.: Nova Science, 2016. P. 36.
  6. Карклинь Б.Н., Трейманис А.П., Громов В.С. ИК-спектроскопия древесины и ее основных компонентов. VI. Определение содержания лигнина в препаратах сульфатной целлюлозы по ИК-спектрам // Химия древесины. 1975. № 2. С. 52.
  7. Карклинь В.Б., Эйдус Я.А., Крейцберг З.Н. ИК-спектроскопия древесины и ее основных компонентов. XII. Спектрохимические корреляции и их применение к анализу лигнина в древесине // Химия древесины. 1977. № 4. С. 90.
  8. Деркачева О.Ю., Цыпкин Д.О. Оценка содержания лигнина в волокнах бумаги по данным ИК спектроскопии отражения // Журн. прикл. спектроскопии. 2017. Т. 84. № 6. С. 993. (Derkacheva O.Y., Tsypkin D.O. Lignin content in paper fibers assessed using IR reflectance spectroscopy // J. Appl. Spectrosс. 2018. V. 84. № 6. P. 1071.) https://doi.org/10.1007/s10812-018-0588-6
  9. Афанасьев Н.И., Личутина Т.Ф., Русакова М.А., Прокшин Г.Ф., Вишнякова А.П., Сухов Д.А., Деркачева О.Ю. Оценка содержания и структурных изменений остаточного лигнина и смолы в лиственной сульфатной целлюлозе методом ИК Фурье-спектроскопии // Журн. прикл. спектроскопии. 2006. Т. 79. № 10. С. 1706. (Afanas’ev N.I., Lichutina T.F., Rusakova M.A., Prokshin G.F., Vishnyakova A.P., Sukhov D.A., Derkacheva O.Y. Estimation of the content and assessment of structural transformations of residual lignin and resin in deciduous kraft pulp by Fourier IR spectroscopy // Russ. J. Appl. Chem. 2006. V. 79. № 10. P. 1689.) https://doi.org/10.1134/S1070427206100260
  10. Деркачева О.Ю., Сухов Д.А., Федоров А.В. Оценка состояния лигнина в сульфатных волокнах по данным ИК спектроскопии // Вестник Тверского государственного университета. Серия: Химия. 2017. № 1. С. 71.
  11. Fiskari J., Derkacheva O., Kulomaa T., Sukhov D. Quick non-destructive analysis of lignin condensation and precipitation by FTIR // Cellul. Chem. Technol. 2016. V. 50. № 2. P. 217.
  12. Fiskari J., Derkacheva O., Kulomaa T. Quick non-destructive analysis of condensed lignin by ftir. Part 2. Pulp samples from acid sulfite cooking // Cellul. Chem. Technol. 2021. V. 55. № 3–4. P. 270. https://doi.org/10.35812/CELLULOSECHEMTECHNOL.2021.55.26
  13. Traoré M., Kaal J., Martínez Cortizas A. Application of FTIR spectroscopy to the characterization of archeological wood // Spectrochim. Acta A. 2016. V. 153. P. 63. https://doi.org/10.1016/j.saa.2015.07.108
  14. Пожидаев В.М., Ретивов В.М., Панарина Е.И., Сергеева Я.Э., Жданович О.А., Яцишина Е.Б. Разработка метода идентификации породы древесины в археологических материалах методом ИК-спектроскопии // Журн. аналит. химии. 2019. Т. 74. № 12. С. 911. (Pozhidaev V.M., Sergeeva Y.E., Yatsishina E.B., Retivov V.M., Panarina E.I., Zhdanovich O.A. Development of a method for identifying wood species in archaeological materials by IR spectroscopy // J. Anal. Chem. 2019. V. 74. № 12. P. 1192.) https://doi.org/10.1134/S1061934819120104
  15. Пожидаев В.М., Сергеева Я.Э., Малахов С.Н., Яцишина Е.Б. Идентификация породы археологической древесины методом ИК-спектроскопии // Журн. аналит. химии. 2021. Т. 76. № 5. С. 408. (Pozhidaev V.M., Sergeeva Y.E., Malakhov S.N., Yatsishina E.B. Identification of archaeological wood species by IR spectroscopy // J. Anal. Chem. 2021. V. 76. № 5. P. 573.) https://doi.org/10.1134/S1061934821050142
  16. Pandey K.K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy // J. Appl. Polym. Sci. 1999. V. 71. № 12. P. 1975. https://doi.org/10.1002/(sici)1097-4628(19990321)71: 12<1969::aid-app6>3.0.co;2-d
  17. Traoré M., Kaal J., Martínez Cortizas A. Differentiation between pine woods according to species and growing location using FTIR-ATR // Wood Sci. Technol. 2018. V. 52. № 2. P. 487. https://doi.org/10.1007/s00226-017-0967-9
  18. Xu F., Yu J., Tesso T., Dowell F., Wang D. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review // Appl. Energy. 2013. V. 104. P. 809. https://doi.org/10.1016/j.apenergy.2012.12.019
  19. Gogna M., Goacher R.E. Comparison of three fourier transform infrared spectroscopy sampling techniques for distinction between lignocellulose samples // BioResources. 2018. V. 13. № 1. P. 846. https://doi.org/10.15376/biores.13.1.846-860
  20. Wang Y., Xiang J., Tang Y., Chen W., Xu Y. A review of the application of near-infrared spectroscopy (NIRS) in forestry // Appl. Spectrosc. Rev. 2022. V. 57. № 4. P. 300. https://doi.org/10.1080/05704928.2021.1875481
  21. Javier-Astete R., Jimenez-Davalos J., Zolla G. Determination of hemicellulose, cellulose, holocellulose and lignin content using FTIR in Calycophyllum spruceanum (Benth.) K. Schum. and Guazuma crinita Lam. // PLoS ONE. 2021. V. 16. № 10. Article e0256559. https://doi.org/10.1371/journal.pone.0256559
  22. Toscano G., Maceratesi V., Leoni E., Stipa P., Laudadio E., Sabbatini S. FTIR spectroscopy for determination of the raw materials used in wood pellet production // Fuel. 2022. V. 313. Article 123017. https://doi.org/10.1016/j.fuel.2021.123017
  23. Acquah G.E., Via B.K., Fasina O.O., Eckhardt L.G. Rapid quantitative analysis of forest biomass using Fourier transform infrared spectroscopy and partial least squares regression // J. Anal. Methods: Chem. 2016. Article 1839598. https://doi.org/10.1155/2016/1839598
  24. Popescu C.-M., Jones D., Kržišnik D., Humar M. Determination of the effectiveness of a combined thermal/chemical wood modification by the use of FT–IR spectroscopy and chemometric methods // J. Mol. Struct. 2020. V. 1200. Article 127133. https://doi.org/10.1016/j.molstruc.2019.127133
  25. Funda T., Fundova I., Gorzsás A., Fries A., Wu H.X. Predicting the chemical composition of juvenile and mature woods in Scots pine (Pinus sylvestris L.) using FTIR spectroscopy // Wood Sci. Technol. 2020. V. 54. № 2. P. 289. https://doi.org/10.1007/s00226-020-01159-4
  26. Vârban R., Crișan I., Vârban D., Ona A., Olar L., Stoie A., Ștefan R. Comparative FT-IR prospecting for cellulose in stems of some fiber plants: Flax, velvet leaf, hemp and jute // Appl. Sci. 2021. V. 11. № 18. Article 8570. https://doi.org/10.3390/app11188570
  27. Grigoryevich A.B., Semyon M., Alexander M., Leonidovich Y.R. Characteristics of aging of wood-fiberboard from the position of IR spectroscopy // JAES. 2020. V. 18. № 4. P. 624. https://doi.org/10.5937/jaes0-29431
  28. Lehto J., Louhelainen J., Kłosińska T., Drożdżek M., Alén R. Characterization of alkali-extracted wood by FTIR-ATR spectroscopy // Biomass Convers. Biorefin. 2018. V. 8. № 4. P. 847. https://doi.org/10.1007/s13399-018-0327-5
  29. Мамлеева Н.А., Шумянцев А.В., Харланов А.Н. Деградация структуры древесины Populus tremula при делигнификации озоном. Термический анализ // Журн. физ. химии. 2021. Т. 95. № 4. С. 534. (Mamleeva N.A., Shumyantsev A.V., Kharlanov A.N. Degradation of structure of Populus tremula Wood during delignification with ozone. Thermal analysis // Russ. J. Phys. Chem. 2021. V. 95. P. 682.) https://doi.org/10.31857/S0044453721040166
  30. Weiwei Z., Xiangdong Ch., Guohui L., Gaoping J., Ye L., Guoqiang L., Choong Y.K., Jin L. Study on the chemical changes of Quercus acuttisima by Ganoderma lucidum cultivation after different years by FTIR analysis // Spectrochim. Acta A. 2022. V. 266. Article 120443. https://doi.org/10.1016/j.saa.2021.120443
  31. Kumar B., Bhardwaj N., Agrawal K., Chaturvedi V., Verma P. Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept // Fuel Process. Technol. 2020. V. 199. Article 106244. https://doi.org/10.1016/j.fuproc.2019.106244
  32. Nanda S., Mohammad J., Reddy S.N., Kozinski J.A., Dalai A.K. Pathways of lignocellulosic biomass conversion to renewable fuels // Biomass Convers. Biorefin. 2013. № 4. P. 191. https://doi.org/10.1007/s13399-013-0097-z
  33. Ревин В.В., Лияськина Е.В., Сапунова Н.Б., Богатырева А.О. Выделение и характеристика штаммов – продуцентов бактериальной целлюлозы // Микробиология. 2020. Т. 89. № 1. С. 88. (Revin V.V., Liyas’kina E.V., Sapunova N.B., Bogatyreva A.O. Isolation and characterization of the strains producing bacterial cellulose // Microbiology. 2020. V. 89. P. 95.) https://doi.org/10.1134/S0026261720010130
  34. da Silva Braga R., Poletto M. Preparation and characterization of hemicellulose films from sugarcane bagasse // Materials. 2020. V. 13. № 4. Article 941. https://doi.org/10.3390/ma13040941
  35. Fai O., Böttcher J.H. The influence of particle size and concentration in transmission and diffuse reflectance spectroscopy of wood // Holz. Roh. Werkst. 1992. V. 50. № 6. P. 221. https://doi.org/10.1007/BF02650312
  36. ГОСТ Р 56881-2016. Биомасса. Определение зольности стандартным методом Biomass. Determination of the ash content by standard method. М.: Стандартинформ, 2019. С. 6.
  37. Базарнова Н.Г., Карпова Е.В., Катраков И.Б., Маркин В.И., Микушина И.В., Ольхов Ю.А., Худенко С.В. Методы исследования древесины и ее производных. Барнаул: Изд-во Алт. гос. ун-та, 2002. 160 с.
  38. Raspolli Galletti A.M., D’Alessio A., Licursi D., Antonetti C., Valentini G., Galia A., Di Nasso N.N. Midinfrared FT-IR as a tool for monitoring herbaceous biomass composition and its conversion to furfural // J. Spectroscopy. 2015. V. 2015. Article 719042. https://doi.org/10.1155/2015/719042

补充文件

附件文件
动作
1. JATS XML
2.

下载 (245KB)

版权所有 © С.Г. Кострюков, Х.Б. Матьякубов, Ю.Ю. Мастерова, А.Ш. Козлов, М.К. Пряничникова, А.А. Пыненков, Н.А. Хлучина, 2023

##common.cookie##