Methods for the Continuous Chromatographic Separation of Substances

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Among many versions of methods for the chromatographic separation of substances, to date, insufficient attention has been paid to their continuous separation. Among a few exceptions is a review by Maryutina and Spivakov published in 2001 [4]. Our paper deals with a more detailed consideration of the attempts made for the continuous chromatographic separation of substances and the assessment of the efficiency of the solutions found. The aim of this review was to draw more attention to this promising direction for solving two interrelated problems. First, to creating systems for the continuous analytical control of complex multicomponent samples of the composition changing with time, and, second, to solving preparative and technological problems of the separation of substances with similar chemical properties. In the first case, the method ensures studies of the dynamics of changes in the composition of complex multicomponent mixtures in studying fast chemical processes, and, when used for technological purposes, it opens up a possibility of the continuous chemical-analytical monitoring of their course from the standpoint of economic efficiency and safety. In the second case, methods of continuous chromatographic separation ensure an increase in the efficiency and productivity of obtaining valuable high-purity substances.

About the authors

L. N. Moskvin

St. Petersburg State University

Email: moskvinln@yandex.ru
199034, St. Petersburg, Russia

A. E. Kostanyan

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: moskvinln@yandex.ru
119991, Moscow, Russia

A. L. Moskvin

St. Petersburg National Research University of Information Technologies, Mechanics and Optics

Email: moskvinln@yandex.ru
197101, St. Petersburg, Russia

O. V. Rodinkov

St. Petersburg State University

Email: moskvinln@yandex.ru
199034, St. Petersburg, Russia

N. M. Yakimova

St. Petersburg State University

Author for correspondence.
Email: moskvinln@yandex.ru
199034, St. Petersburg, Russia

References

  1. Martin A.J.P. (1949) Summarizing paper // Disc. Far. Soc. 1949. V. 7. P. 332.
  2. Москвин Л.Н., Царицына Л.Г. Непрерывное разделение многокомпонентной смеси веществ в распределительной жидкостно-жидкостной хроматографии. II. Исполнение устройства и положение максимумов элюирования // Радиохимия. 1970. Т. 12. С. 731.
  3. Berfhod A., Maryutina T.A., Spivakov B.Ya., Shpigun O.M., Sutherland I.A. Counter current chromatography in analytical chemistry (IUPAC Technical Report) // Pure Appl. Chem. 2009. V. 81. P. 355.
  4. Maryutina T.A., Spivakov B.Ya. Encyclopedia of Chromatography / Ed. Cazes J. N.Y.: Marcel Dekker, 2001. P. 137.
  5. Cole L.G., Hall L.G. Chromatography. US Patent 2891630. 1959.
  6. Mosier L.C. Continuous gas chromatography. US Patent 3078647. 1963.
  7. Heaton W.B. Chromatographic method and apparatus. US Patent 3077103. 1963.
  8. Кожин С.А., Москвин Л.Н., Флейшер А.Ю., Епифанова И.О. Разделение эфирных масел методом жидкостно-жидкостной обращено-фазовой распределительной хроматографии // Журн. общ. химии. 1973. Т. 43. С. 428.
  9. Москвин Л.Н., Мозжухин А.В., Царицына Л.Г. Непрерывное разделение многокомпонентных смесей веществ в ионообменной хроматографии // Журн. аналит. химии. 1975. Т. 30. С. 39.
  10. Москвин Л.Н., Гумеров М.Ф., Горшков А.И., Ефимов А.А. Исследование блочных сорбентов для газо-адсорбционной хроматографии // Журн. прикл. химии. 1974. Т.4. № 7. С. 1973.
  11. Taramasso M. Considerations for the design of a rotating unit for continuous production by gas chromatography and its applications // J. Chromatogr. 1970. V. 49. P. 27.
  12. Москвин Л.Н., Гумеров М.Ф., Горшков А.И. Многоколоночный хроматограф непрерывного действия. Авт. свид. СССР 492803 // Б. и. 1973. № 43.
  13. Москвин Л.Н., Гумеров М.Ф., Горшков А.И. Многоколоночный хроматограф для непрерывного разделения смесей. Авт. свид. СССР 641340 // Б. и. 1976. № 1.
  14. Москвин Л.Н., Гумеров М.Ф., Горшков А.И. Многоколоночный хроматограф непрерывного действия. Авт. свид. СССР 817581 // Б. и. 1981. № 12.
  15. Moskvin L.N., Rodinkov O.V. Analytical application of liquid-gas and liquid-gas-solid chromatography // Crit. Rev. Anal. Chem. 1994. V. 24. P. 317. https://doi.org/10.1080/10408349408048822
  16. Ito Y., Conway W.D. Development of continuous countercurrent chromatography // Anal. Chem. 1984. V. 56. P. 534A.
  17. Wang K., Liu Z., Huang J., Dong X., Song L., Pan Y., Liu F. Preparative isolation and purification of theaflavins and catechins by high-speed countercurrent // J. Chromatogr. B. 2008. V. 867. P. 282.
  18. Imanoglu S. Simulated moving bed chromatography (SMB) for application in bioseparation // Adv. Biochem. Eng. Biotechnol. 2002. V. 76. P. 212. https://doi.org/10.1007/3-540-45345-8_6
  19. Pais L.S., Loureiro J.M., Rodrigues A.E. Chiral separation by SMB chromatography // Sep. Purif. Technol. 2000. V. 20. P. 67. https://doi.org/10.1016/S1383-5866(00)00063-0
  20. Sreedhar B., Hobbs D.T., Kawajiri Y. Simulated moving bed chromatography design for lantanide and actinide separations using Reillex HPQTM resin // Sep. Purif. Technol. 2014. V. 136. P. 5057. https://doi.org/10.1016/j.seppur.2014.08.006
  21. Hideyuki Nishizawa, Kayoko Tahara, Shinobu Miyamori, Yoko Motegi, Tomoko Shoji, Yoshihiro Abe. True moving bed chromatography: Solid–liquid multi-stage counter-current extraction // J. Chromatogr. A. 1999. V. 849. P. 61. https://doi.org/10.1016/S0021-9673(99)00502-6
  22. Idelfonso B.R., Nogueira I.B.R., Ribeiro A.M., Rodrigues A.E., Loureiro J.M. Dynamics of true moving bed separation process: Effect of operating variables on performance indicators using orthogonalization method // Comput. Chem. Eng. 2016. V. 86. P. 5. https://doi.org/10.1016/j.compchemeng.2015.12.009
  23. Nogueira I.B.R., Ribeiro A.M., Rodrigues A.E., Loureiro J.M. Dynamic response to process disturbances – A comparison between TMB/SMB models in transient regime // Comput. Chem. Eng. 2017. V. 99. P. 230. https://doi.org/10.1016/j.compchemeng.2017.01.026
  24. Nogueira I.B.R., Ribeiro A.M., Martins M.A.F., Rodrigues A.E., Koivisto H., Loureiro J.M. Dynamics of a true moving bed separation process: Linear model identification and advanced process control // J. Chromatogr. A. 2017. V. 1504. P. 112. https://doi.org/10.1016/j.chroma.2017.04.060
  25. Ito Y., Bowman R.L. Continuous countercurrent chromatography with the flow-through coil planet centrifuge // J. Chromatogr. Sci. 1973. V. 11. P. 284.
  26. Conway W.D. Countercurrent Chromatography: Apparatus, Theory and Applications. N.Y.: VCH Publishers Inc., 1990. 475 p.
  27. Menet J.M., Thiebaut D. (Eds.) Countercurrent Chromatography, Chromatographic Science Series. V. 82. N.Y.: Marcel Dekker, Inc. 1999.
  28. Zolotov Yu.A., Spivakov B.Ya., Maryutina T.A., Bashlov V.L., Pavlenko I.V. Partition countercurrent chromatography in inorganic analysis // Fresenius J. Anal. Chem. 1989. V. 335. P. 938.
  29. Maryutina T.A., Spivakov B.Ya., Tschopel P. Application of countercurrent chromatography to purification of chemical reagents // Fresenius J. Anal. Chem. 1996. V. 356. P. 430. https://doi.org/10.1007/s0021663560430
  30. Berthod A., Billardello B., Geoffroy S. Polyphenols in countercurrent chromatography, an example of large scale separation // Analysis. 1999. V. 27. P. 750. https://doi.org/10.1051/analusis:1999140
  31. Kostanian A.E., Berthod A., Ignatova S.N., Maryutina T.A., Spivakov B.Ya., Sutherland I.A. Countercurrent chromatographic separation: A hydrodynamic approach developed for extraction columns // J. Chromatogr. A. 2004. V. 1040. P. 63. https://doi.org/10.1016/j.chroma.2004.03.055
  32. Ito Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography // J. Chromatogr. A. 2005. V. 1065. P. 145. https://doi.org/10.1016/j.chroma.2004.12.044
  33. Lee Y.W. Dual counter-current chromatography – Its applications in natural products research // J. Chromatogr. A. 1991. V. 538. P. 37.
  34. Delannay E., Toribio A., Boudesocque L., Nuzillard J.-M., Zeches-Hanrot M., Dardennes E., Dour G. Le, Sapi J., Renault J.-H. Multiple dual-mode centrifugal partition chromatography, a semi-continuous development mode for routine laboratory-scale purifications // J. Chromatogr. A. 2006. V. 1127. P. 45. https://doi.org/10.1016/j.chroma.2006.05.069
  35. Rubioa N., Ignatova S., Minguillóna C., Sutherland I. Multiple dual-mode countercurrent chromatography applied to chiral separations using a (S)-naproxen derivative as chiral selector // J. Chromatogr. A. 2009. V. 1216. P. 8505. https://doi.org/10.1016/j.chroma.2009.10.006
  36. Mekaoui N., Berthod A. Using the liquid nature of the stationary phase. VI. Theoretical study of multi-dual mode countercurrent chromatography // J. Chromatogr. A. 2011. V. 1218. P. 6061. https://doi.org/10.1016/j.chroma.2010.12.104
  37. Hewitsona P., Ignatova S., Ye H., Chen L., Sutherland I. Intermittent counter-current extraction as an alternative approach to purification of Chinese herbal medicine // J. Chromatogr. A. 2009. V. 1216. P. 4187. https://doi.org/10.1016/j.chroma.2008.12.005
  38. Aihua P., Haoyu Y., Jie S., Shichao H., Shijie Z., Shucai L., Lijuan C. Separation of honokiol and magnolol by intermittent counter-current Extraction // J. Chromatogr. A. 2010. V. 1217. P. 5935. https://doi.org/10.1016/j.chroma.2010.07.047
  39. Ignatova S., Hewitson P., Mathews B., Sutherland I. Evaluation of dual flow counter-current chromatography and intermittent counter-current extraction // J. Chromatogr. A. 2011. V. 1218. P. 6102. https://doi.org/10.1016/j.chroma.2011.02.032
  40. Hewitson P., Ignatova S., Sutherland I. Intermittent counter-current extraction – Effect of the key operating parameters on selectivity and throughput // J. Chromatogr. A. 2011. V. 1218. P. 6072. https://doi.org/10.1016/j.chroma.2011.03.072
  41. Goll J., Morley R., Minceva M. Trapping multiple dual mode centrifugal partition chromatography for the separation of intermediately-eluting components: Operating parameter selection // J. Chromatogr. A. 2017. V. 1469. P. 68. https://doi.org/10.1016/j.chroma.2017.03.039
  42. Yang Y., Aisa H.A., Ito Y. Mathematical model of computer-programmed intermittent dual countercurrent chromatography applied to hydrostatic and hydrodynamic equilibrium systems // J. Chromatogr. A. 2009. V. 1216. P. 6310. https://doi.org/10.1016/j.chroma.2009.07.015
  43. Huang X.-Y., Ignatova S., Hewitson P., Di D.-L. An overview of recent progress in elution mode of counter current chromatography // Trends Anal. Chem. 2016. V. 77. P. 214. https://doi.org/10.1016/j.trac.2015.08.006
  44. Berthod A., Ruiz-Ángel M.J., Carda-Broch S. Countercurrent chromatography: People and applications // J. Chromatogr. A. 2009. V. 1216. P. 4206. https://doi.org/10.1016/j.chroma.2008.10.071
  45. Hopmann E., Goll J., Minceva M. Sequential centrifugal partition chromatography: a new continuous chromatographic technology // Chem. Eng.Technol. 2012. V. 35. P. 72. https://doi.org/10.1002/ceat.201100266
  46. Kostanyan A.E. Controlled-cycle counter-current chromatography // J. Chromatogr. A. 2008. V. 1211. P. 55. https://doi.org/10.1016/j.chroma.2008.09.088
  47. Kostanyan A.E., Voshkin A.A. Analysis of cyclical liquid chromatography // Theor. Found. Chem. Eng. 2011. V. 45. P. 68. https://doi.org/10.1134/S0040579510061028
  48. Kostanyan A.E., Voshkin A.A., Kodin N.V. Controlled-cycle pulsed liquid–liquid chromatography. A modified version of Craig’s counter-current distribution // J. Chromatogr. A. 2011. V. 1218. P. 6135. https://doi.org/10.1016/j.chroma.2010.12.103
  49. Gerster J.A., Scull H.M. Performance of tray columns operated in cyclic mode // AIChE J. 1970. V. 16. P. 108. https://doi.org/10.1002/aic.690160121
  50. Porter R.S., Johnson J.F. Circular gas chromatography // Nature. 1958. V. 183. P. 391.
  51. Seidel-Morgenstern A., Guiochon G. Theoretical study of recycling in preparative chromatography // AIChE J. 1993. V. 39. P. 809. https://doi.org/10.1002/aic.690390509
  52. Dingenen J. Preparative chromatographic resolution of racemates on chiral stationary phases on laboratory and production scales by closed-loop recycling chromatography // J. Chromatogr. A. 1994. V. 666. P. 627. https://doi.org/10.1016/0021-9673(94)80423-0
  53. Chartor F., Bailly M., Guiochon G. Recycling in preparative liquid chromatography // J. Chromatogr. A. 1994. V. 687. P. 13. https://doi.org/10.1016/0021-9673(94)00728-4
  54. Han Q.B., Song J.Z., Qiao C.F., Wong L., Xu H.X. Preparative separation of gambogic acid and its C-2 epimer using recycling high-speed counter-current chromatography. // J. Chromatogr. A. 2006. V. 1127. P. 298. https://doi.org/10.1016/j.chroma.2006.07.044
  55. Xie J., Deng J., Tan F., Su J. Separation and purification of echinacoside from Penstemon barbatus (Can.) Roth by recycling high-speed counter-current chromatography // J. Chromatogr. B. 2010. V. 878. P. 2665. https://doi.org/10.1016/j.jchromb.2010.07.023
  56. Tong S., Guan Y.-X., Yan J., Zheng B., Zhao L. Enantiomeric separation of (R,S)-naproxen by recycling high speed counter-current chromatography with hydroxypropyl-β-cyclodextrin as chiral selector // J. Chromatogr. A. 2011. V. 1218. P. 5434. https://doi.org/10.1016/j.chroma.2011.06.015
  57. Yang J., Ye H., Lai H., Li S., He S., Zhong S., Chen L., Peng A. Separation of anthraquinone compounds from the seed of Cassia obtusifolia L. using recycling counter-current chromatography // J. Sep. Sci. 2012. V. 35. P. 256. https://doi.org/10.1002/jssc.201100535
  58. Meng J., Yang Z., Liang J., Zhou H., Wu S. Multi-channel recycling counter-current chromatography for natural product isolation: Tanshinones as examples // J. Chromatogr. A. 2014. V. 1327. P. 27. https://doi.org/10.1016/j.chroma.2013.12.069
  59. Friesen J.B., McAlpine J.B., Chen S.-N., Pauli G.F. Countercurrent separation of natural products: An update // J. Nat. Prod. 2015. V. 78. P. 1765. https://doi.org/10.1021/np501065h
  60. Chen Y., Yan X., Lu F., Jiang X., Friesen J.B., Pauli G.F., Chen S.-N., Li D.-P. Preparation of flavone di-C-glycoside isomers from Jian-Gu injection (Premna fulva Craib.) using recycling counter-current chromatography // J. Chromatogr. A. 2019. V. 1599. P. 180. https://doi.org/10.1016/j.chroma.2019.03.030
  61. Kostanyan A.E. Modeling of closed-loop recycling liquid-liquid chromatography: Analytical solutions and model analysis // J. Chromatogr. A. 2015. V. 1406. P. 156. https://doi.org/10.1016/j.chroma.2015.06.010
  62. Kostanyan A.E. Simple equations to simulate closed-loop recycling liquid–liquid chromatography: Ideal and non-ideal recycling models // J. Chromatogr. A. 2015. V. 1423. P. 71. https://doi.org/10.1016/j.chroma.2015.10.052
  63. Kostanyan A.E., Erastov A. Theoretical study of closed-loop recycling liquid-liquid chromatography and experimental verification of the theory // J. Chromatogr. A. 2016. V. 1462. P. 55. https://doi.org/10.1016/j.chroma.2016.07.079
  64. Kostanyan A., Martynova M., Erastov A., Belova V. Simultaneous concentration and separation of target compounds from multicomponent mixtures by closed-loop recycling countercurrent chromatography // J. Chromatogr. A. 2018. V. 1560. P. 26. https://doi.org/10.1016/j.chroma.2018.05.032
  65. Kostanyan A., Martynova M. Modeling of two semi-continuous methods in liquid-liquid chromatography: Comparing conventional and closed-loop recycling modes // J. Chromatogr. A. 2020. V. 1614. Article 460735. https://doi.org/10.1016/j.chroma.2019.460735
  66. Kostanyan A.E. Multiple dual mode counter-current chromatography with periodic sample injection: Steady-state and non-steady-state operation // J. Chromatogr. A. 2014. V. 1373. P. 81. https://doi.org/10.1016/j.chroma.2014.11.014
  67. Kostanyan A.E., Erastov A.A. Steady state preparative multiple dual mode counter-current chromatography: Productivity and selectivity. Theory and experimental verification // J. Chromatogr. A. 2015. V. 1406. P. 118. https://doi.org/10.1016/j.chroma.2015.05.074
  68. Kostanyan A.E., Shishilov O.N. An easy-to-use calculating machine to simulate steady state and non-steady-state preparative separations by multiple dual mode counter-current chromatography with semi-continuous loading of feed mixtures // J. Chromatogr. A. 2018. V. 1552. P. 92. https://doi.org/10.1016/j.chroma.2018.04.010
  69. Giddings J.C., Fisher S.R., Myers M.N. Field-flow fractionation – One phase chromatography for macromolecules and particles // Am. Lab. 1978. V. 10. P. 15.
  70. Fedotov P.S., Spivakov B.Ya., Shkinev V.M. Possibility of field-flow fractionation of macromolecules and particles in a rotating coiled tube // Anal. Sci. 2000. V. 16. P. 535. http://www.jstage.jst.go.jp/browse/analsci. https://doi.org/10.2116/analsci.16.535
  71. Катасонова О.Н., Федотов П.С., Карандашев В.К., Спиваков Б.Я. Применение вращающихся спиральных колонок для фракционирования частиц почвы и последовательного экстрагирования форм тяжелых металлов из илистой пылеватой и песчаной фракции // Журн. аналит. химии. 2005. V. 60. № 7. С. 765. (Katasonova O.N., Fedotov P.S., Karandashev V.K., Spivakov B.Ya. Application of rotating coiled columns to the fractionation of soil particles and to the sequential extraction of heavy-metal species from silty, dusty, and sandy fractions // J. Anal. Chem. 2005. V. 60. № 7. P. 684.)https://doi.org/10.1007/s10809-005-0159-x
  72. Moskvin L.N. Chromatomembrane method for the continuous separation of substances // J. Chromatogr. A. 1994. V. 669. P. 81. https://doi.org/10.1016/0021-9673(94)80339-0
  73. Москвин Л.Н. Хроматомембранные легкие // Природа. 1997. Т. 10. С. 39.
  74. Родинков О.В., Москвин Л.Н. Непрерывная двухмерная хроматомембранная газовая экстракция. Тарелочная модель и практические следствия // Журн. аналит. химии. 2000. Т. 55. № 9. С. 950. (Rodinkov O.V., Moskvin L.N. Continuous two-dimensional chromatomembrane gas extraction: A plate model and its practical consequences // J. Anal. Chem. 2000. V. 55. № 9. P. 854.)https://doi.org/10.1007/BF02757849
  75. Родинков О.В., Москвин Л.Н. Закономерности противоточной хроматомембранной газовой экстракции // Журн. аналит. химии. 2003. Т. 58 № 6. С. 611. (Rodinkov O.V., Moskvin L.N. Regularities in counterflow chromatomembrane gas extraction // J. Anal. Chem. 2003. V. 58. № 6. P. 548. https://proxy.library.spbu.ru:2060/10.1023/A:1024112118542)
  76. Родинков О.В., Бугайченко А.С., Москвин Л.Н. Сравнение аналитических возможностей различных схем хроматомембранной газовой экстракции // Журн. аналит. химии. 2019. Т. 76. № 9. С. 797. (Rodinkov O.V., Bugaichenko A.S., Moskvin L.N. Comparison of the analytical capabilities of different chromatomembrane gas extraction techniques // J. Anal. Chem. 2021. V. 76. № 9. P. 1051.)https://doi.org/10.1134/S1061934821090094
  77. Moskvin L.N., Moskvin A.L. Chromatomembrane methods – Novel automatization possibilities of substances separation processes // Laboratory Robotics and Automation. 1998. V. 10. P. 3. https://doi.org/10.1002/(SICI)1098-2728(1998)10:1< 3::AID-LRA2>3.0.CO;2-8
  78. Москвин Л.Н., Родинков О.В. Хроматомембранные методы. Физико-химические принципы, аналитические и технологические возможности // Изв. АН. Сер. хим. 2012. Т. 61. № 4. С. 719. (Moskvin L.N., Rodinkov O.V. Chromatomembrane methods: Physicochemical principles, analytical and technological possibilities // Russ. Chem. Bull. 2012. V. 61. P. 723.)https://doi.org/10.1007/s11172-012-0105-7
  79. Moskvin L.N., Rodinkov O.V. Continuous chromatomembrane headspace analysis // J. Chromatogr. A. 1996. V. 725. P. 351. https://doi.org/10.1016/0021-9673(95)00991-4
  80. Rodinkov O.V., Moskvin L.N., Viktorova M.I., Dyakin A.A., Yakimova N.M. Chromatomembrane headspace analysis of aqueous solutions at elevated temperatures // Chromatographia. 2015. V. 78. P. 1211. https://doi.org/10.1007/s10337-015-2926-7
  81. Москвин Л.Н., Родинков О.В. От жидкостно-газовой хроматографии к хроматомембранному массообменному процессу // Журн. аналит. химии. 2019. Т. 74. № 10. С. 729. (Moskvin L.N., Rodinkov O.V. From liquid–gas chromatography to a chromatomembrane mass-exchange process // J. Anal. Chem. 2019. V. 74. № 10. P. 955.)https://doi.org/10.1134/S1061934819100083
  82. Москвин Л.Н., Родинков О.В., Григорьев Г.Л., Зыкин И.А. Хроматомембранная газоэкстракционная очистка воды от растворенного кислорода // Журн. прикл. химии. 2002. Т. 75. № 8. С. 1227. (Moskvin L.N., Rodinkov O.V., Grigor’ev G.L., Zikin I.A. Chromatomembrane gas extraction water purification from dissolved oxygen // Russ. J. Appl. Chem. 2002. V. 75. № 8. P. 1253. https://proxy.library.spbu.ru: 2060/
  83. Bloch C., Simon J., Modkvin L.N., Rodinkov O.V. The properties of chromatomembrane cells in flow systems coupled to gas chromatography – Analysis of volatile organic compounds // Talanta. 2000. V. 52. P. 123. https://doi.org/10.1016/S0039-9140(00)00315-5
  84. Sritharathikhun P., Oshima M., Motomizu S. On-line collection/concentration of trace amounts of formaldehyde in air with chromatomembrane cell and its sensitive determination by flow injection technique coupled with spectrophotometric and fluorometric detection // Talanta. 2005. V. 67. P. 1014. https://doi.org/10.1016/j.talanta.2005.04.037
  85. Родинков О.В., Москвин Л.Н., Майорова Н.А. Быстродействие различных схем непрерывной хроматомембранной газовой экстракции // Журн. аналит. химии. 2005. Т. 60. № 8. С. 727. (Rodinkov O.V., Moskvin L.N., Maiorova N.A. Operation rates of different schemes of continuous chromatomembrane gas extraction // J. Anal. Chem. 2005. V. 60. № 8. P. 820.)https://doi.org/10.1007/s10809-005-0171-1
  86. Franchina F.A., Zanella D., Lazzari E., Stefanuto P.-H., Focant J.-F. Investigating aroma diversity combining purge-and-trap, comprehensive two-dimensional gas chromatography, and mass spectrometry // J. Sep. Sci. 2020. V. 43. P. 1790. https://doi.org/10.1002/jssc.201900902
  87. Родинков О.В., Вагнер Е.А., Бугайченко А.С., Москвин Л.Н. Сравнение эффективности углеродных сорбентов для концентрирования легколетучих органических веществ из влажных газовых // Журн. аналит. химии. 2019. Т. 74. № 9. С. 673. (Rodinkov O.V., Vagner E.A., Bugaichenko A.S., Moskvin L.N. Comparison of the efficiencies of carbon sorbents for the preconcentration of highly volatile organic substances from wet gas atmospheres for the subsequent gas-chromatographic determination. // J. Anal. Chem. 2019. V. 74. № 9. P. 877.)https://doi.org/10.1134/S1061934819090089
  88. Москвин Л.Н., Григорьев Г.Л., Родинков О.В., Седов В.М., Сенчик К.Ю. Хроматомембранная оксигенация крови, выбор оптимальных условий для массообмена в систем кровь–воздух // Клинический и лабораторный консилиум. 2005. № 8. С. 41.
  89. Moskvin L.N., Rodinkov O.V. Chromatography membrane techniques as the prospect of creating technological processes for the continuous extraction separation of substances // Theor. Found. Chem. Eng. 2016. V. 50. P. 655. https://doi.org/10.1134/S0040579516040230
  90. Moskvin L.N., Rodinkov O.V., Moskvin A.L., Spivakovskii V., Vlasov A.Y., Bugaichenko A.S., Samokhin A.S., Nesterenko P.N. Chromatomembrane preconcentration of phenols using a new 3D printed microflow cell followed by reversed-phase HPLC determination // J. Sep. Sci. 2021. V. 44. P. 2449. https://doi.org/10.1002/jssc.202100089
  91. Ghosh R. Ultra high-speed, ultra-resolution preparative separation of protein biopharmaceuticals using membrane chromatography // J. Sep. Sci. 2022. V. 45. P. 2024.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (197KB)
3.

Download (412KB)
4.

Download (164KB)

Copyright (c) 2023 Л.Н. Москвин, А.Е. Костанян, А.Л. Москвин, О.В. Родинков, Н.М. Якимова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies