Determination of Methane Dissolved in Water Using Metal-Oxide Sensors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The method for the determination of dissolved methane in water using the system based on a tubular selective membrane permeable to volatile organic substances and impermeable to liquid water is proposed. Purified air is passed through the membrane tube immersed in water. The air inside the tube is saturated with methane dissolved in water, which diffuses through the tube wall. Methane concentration is measured in the air passing through the membrane tube using a semiconductor metal oxide sensor. The sensitivity threshold and the response time of the system are estimated.

About the authors

M. Yu. Yablokov

Enikolopov Institute of Synthetic Polymer Materias RAS

Email: yabl1@yandex.ru
117393, Moscow, Russia

A. A. Vasiliev

National Research Centre “Kurchatov institute”

Email: yabl1@yandex.ru
123182, Moscow, Russia

R. V. Gainutdinov

FSRC “Crystallography and Photonics” of the Russian Academy of Sciences

Email: yabl1@yandex.ru
119333, Moscow, Russia

A. V. Sokolov

LTD “NIIIIT”

Author for correspondence.
Email: yabl1@yandex.ru
123592, Moscow, Russia

References

  1. Коган В.Т., Антонов А.С., Лебедев Д.С., Власов С.А., Краснюк А.Д. Прямое масс-спектрометрическое определение метана и его летучих гомологов в воде // Журнал технической физики. 2011. Т. 83. № 3. С. 132. (Kogan V.T., Antonov A.S., Lebedev D.S., Vlasov S.A., Krasnyuk A.D. Direct mass-spectrometric determination of methane and its homologues in water // Russ. J. Tech. Phys. 2013. V. 83. № 3. P. 132.)
  2. Коган В.Т., Лебедев Д.С., Павлов А.К., Чичагов Ю.В., Антонов А.С. Портативный масс-спектрометр для прямого контроля газов и летучих соединений в пробах воздуха и воды // Приборы и техника эксперимента. 2011. № 3. С. 105. (Kogan V.T., Lebedev D.S., Pavlov A.K., Chichagov Yu.V, Antonov A.S. A portable mass spectrometer for direct monitoring of gases and volatile compounds in air and water samples // Instruments and Experimental Techniques. 2011. V. 54. № 3. P. 390.)
  3. Kampbell D.H., Vandegrift S.A. Analysis of dissolved methane, ethane, and ethylene in ground water by a standard gas chromatographic technique // J. Chromatogr. Sci. 1998. T. 36. № 5. C. 253.
  4. Drozdova S., Ritter W., Lendl B., Rosenberg E. Challenges in the determination of petroleum hydrocarbons in water by gas chromatography (hydrocarbon index) // Fuel. 2013. V. 113. P. 527.
  5. Lu W., Chou I. M., Burruss R. C. Determination of methane concentrations in water in equilibrium with sI methane hydrate in the absence of a vapor phase by in situ Raman spectroscopy // Geochim. Cosmochim. Acta. 2008. V. 72. №. 2. P. 412.
  6. Gonzalez-Valencia R., Magana-Rodriguez F., Gerardo-Nieto O., Sepulveda-Jauregui A., Martinez-Cruz K., Walter Anthony K., Baer D., Thalasso F. In situ measurement of dissolved methane and carbon dioxide in freshwater ecosystems by off-axis integrated cavity output spectroscopy // Environ. Sci. Technol. 2014. V. 48. № 19. P. 11421.
  7. Boulart C., Mowlem M.C., Connelly D.P., Dutasta J.P., German C.R. A novel, low-cost, high performance dissolved methane sensor for aqueous environments // Optics Express. 2008. V. 16. № 17. P. 12607.
  8. Cadena-Pereda R.O., Rivera-Muñoz E.M., Herrera-Ruiz G., Gomez-Melendez D.J., Anaya-Rivera E.K. Automatic carbon dioxide-methane gas sensor based on the solubility of gases in water // Sensors. 2012. V. 12. № 8. P. 10742.
  9. Kamieniak J., Randviir E.P., Banks C.E. The latest developments in the analytical sensing of methane // Trends Anal. Chem. 2015. V. 73. P. 146.
  10. Егоров А.И., Казаченко В.П., Рогачев А.В., Яблоков М.Ю. Динамика начальных стадий формирования покрытий политетрафторэтилена и их свойства // Журн. физ. химии. 2002. Т. 76. № 11. С. 2085. (Egorov А.I., Kazachenko V.P., Rogachev A.V., Yablokov M.Yu. The dynamics of the initial stages of formation of polytetrafluoroethylene coatings and their properties // Russ. J. Phys. Chem. 2002. V. 76. № 11. P. 1898.)
  11. Vasiliev A., Pavelko R., Gogish-Klushin S., Kharitonov D., Gogish-Klushina O., Pisliakov A., Sokolov A., Samotaev N., Guarnieri V., Zen M., Lorenzelli L. Sensors based on technology “nano-on-micro” for wireless instruments preventing ecological and industrial catastrophes / Sensors for Environment, Health and Security / Ed. Baraton M.-I. Springer, 2009. P. 205.
  12. Kravets L.I., Gilman A.B., Yablokov M.Yu., Shchegolikhin A.N., Mitu B., Dinescu G. Properties of poly(ethylene terephthalate) track membrane with a polymer layer obtained by electron beam dispersion of polytetrafluoroethylene in vacuum // High Temp. Mat. Proc. 2015. V. 19. P. 121.
  13. Кравец Л.И., Яблоков М.Ю., Гильман А.Б., Щеголихин А.Н., Миту Б., Динеску Г. Микро- и нанофлюидные диоды на основе трековой мембраны из полиэтилентерефталата // Химия высоких энергий. 2015. Т. 49. № 5. С. 410. (Kravets L.I., Yablokov M.Yu., Gilman A.B., Shchegolikhin A.N., Mitu B., Dinescu G. Micro and nanofluidic diodes based on track-etched poly(ethylene terephthalate) membrane // High Energy Chemistry. 2015. V. 49. № 5. P. 367.)
  14. Kravets L., Gainutdinov R., Gilman A., Yablokov M., Satulu V., Mitu B., Dinescu G. Morphology and wettability of polytetrafluoroethylene-like films deposited onto track-etched membrane surface in vacuum // Plasma Phys. Technol. 2018. V. 5. P. 110.
  15. Kravets L.I., Gilman A.B., Yablokov M.Yu., Altynov V.A., Zagonenko V.F. Composite membranes with the hydrophobic and hydrophilic layers // J. Phys.: Confer. Ser. 2018. V. 982. Article 012010.
  16. Kravets L., Yarmolenko M., Gainutdinov R., Yablokov M., Altynov V., Lizunov N. Fabrication of composite membranes for water desalination by electron-beam deposition of a polytetrafluoroethylene-like coating on the surface of track-etched membrane // High Temp. Mater. Processes. 2020. V. 24. № 4. P. 239.
  17. Кравец Л.И., Гильман А.Б., Яблоков М.Ю., Алтынов В.А., Орелович О.Л. Формирование композитных мембран, содержащих гидрофобные полимерные слои, методом электроннолучевого диспергирования в вакууме // Химия высоких энергий. 2016. Т. 50. № 6. С. 485. (Kravets L.I., Gil’man A.B., Yablokov M.Y., Altynov V.A., Orelovitch O.L. Formation of composite membranes containing hydrophobic polymer layers by electron-beam sputter deposition // High Energy Chemistry. 2016. V. 50. № 6. P. 460.)
  18. Vasiliev A.A., Yablokov M.Y., Sokolov A.V. Prototype system for the detection of volatile hydrocarbons in water // Proceedings. 2018. V. 2. P. 734.
  19. Haynes W.M., Lide D.R., Bruno T.J. CRC Handbook of Chemistry and Physics. CRC press, 2017.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (45KB)
3.

Download (789KB)
4.

Download (36KB)
5.

Download (41KB)

Copyright (c) 2023 М.Ю. Яблоков, А.А. Васильев, Р.В. Гайнутдинов, А.В. Соколов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies