Automated Liquid–Liquid Microextraction of Fluoroquinolones for Their Subsequent Chromatographic Determination

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An automated method is developed for dispersive liquid–liquid microextraction of fluoroquinolone antibiotics based on the principles of stepwise injection analysis. The method involves the dispersion of the extractant by the gas phase, formed in situ in the extraction chamber of the flow analyzer. A deep eutectic solvent based on a terpenoid and a mixture of hydrophilic and hydrophobic carboxylic acids is studied as an extractant for the isolation and preconcentration of fluoroquinolones, and a possibility of its use is substantiated. Hydrophilic carboxylic acid in the composition of the extractant acts as a proton donor for the formation of a carbon dioxide dispersant in the presence of sodium carbonate dissolved in the aqueous phase. A possibility of combining the developed method with high-performance liquid chromatography with fluorimetric detection is shown on an example of the determination of fluoroquinolones in wastewaters. The limits of detection (3σ) for ofloxacin, fleroxacin, and norfloxacin were 0.3 µg/L.

About the authors

I. I. Timofeeva

Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, St. Petersburg State University

Email: i.i.timofeeva@spbu.ru
199034, St. Petersburg, Russia

K. A. Barbayanov

Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, St. Petersburg State University

Email: i.i.timofeeva@spbu.ru
199034, St. Petersburg, Russia

A. V. Bulatov

Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, St. Petersburg State University

Author for correspondence.
Email: i.i.timofeeva@spbu.ru
199034, St. Petersburg, Russia

References

  1. Крылов В.А., Крылов А.В., Мосягин П.В., Маткивская Ю.О. Жидкофазное микроэкстракционное концентрирование примесей // Журн. аналит. химии. 2011. Т. 66. С. 341.
  2. Дмитриенко С.Г., Апяри В.В., Толмачева В.В., Горбунова М.В. Жидкостная экстракция органических соединений в каплю экстрагента. Обзор обзоров // Журн. аналит. химии. 2021. Т. 76. № 8. С. 675. https://doi.org/10.31857/S0044450221080041
  3. Дмитриенко С.Г., Апяри В.В., Толмачева В.В., Горбунова М.В. Дисперсионная жидкостно-жидкостная микроэкстракция органических соединений. Обзор обзоров // Журн. аналит. химии. 2020. Т. 75. № 10. С. 867. https://doi.org/10.31857/S0044450220100059
  4. Золотов Ю.А. Проточный химический анализ: монография. М.: Наука, 2014. 428 с.
  5. Цизин Г.И., Статкус М.А., Золотов Ю.А. Сорбционное и экстракционное концентрирование микрокомпонентов в проточных системах анализа // Журн. аналит. химии. 2015. Т. 70. № 11. С. 1123.
  6. Vakh C., Falkova M., Timofeeva I., Moskvin A., Moskvin L., Bulatov A. Flow analysis: A novel approach for classification // Crit. Rev. Anal. Chem. 2016. V. 46 P. 374. https://doi.org/10.1080/10408347.2015.1087301
  7. Вах К.С., Тимофеева И.И., Булатов А.В. Автоматизация микроэкстракционного концентрирования на принципах циклического инжекционного анализа // Журн. аналит. химии. 2019. Т. 74. № 11. С. 846. https://doi.org/10.1134/S106193481911011X
  8. Smith E.L., Abbott A.P., Ryder K.S. Deep eutectic solvents (DESs) and their applications // Chem. Rev. 2014. V. 114. № 21. P. 11060. https://doi.org/10.1021/cr300162p
  9. Shishov A., Bulatov A., Locatelli M., Carradori S., Andruch V. Application of deep eutectic solvents in analytical chemistry. A review // Microchem. J. 2017. V. 135. P. 33. https://doi.org/10.1016/j.microc.2017.07.015
  10. Cao J., Su E. Hydrophobic deep eutectic solvents: The new generation of green solvents for diversified and colorful applications in green chemistry // J. Clean. Prod. 2021. V. 314. Article 127965. https://doi.org/10.1016/j.jclepro.2021.127965
  11. Ma Y., Wang Q., Zhu T. Comparison of hydrophilic and hydrophobic deep eutectic solvents for pretreatment determination of sulfonamides from aqueous environments // Anal. Methods. 2019. V. 11. P. 5901. https://doi.org/10.1039/C9AY02244A
  12. Turnidge J. Pharmacokinetics and pharmacodynamics of fluoroquinolones // Drugs. 1999. V. 58. P. 29. https://doi.org/10.2165/00003495-199958002-00006
  13. Martins M.A.R., Crespo E.A., Pontes P.V.A., Silva L.P., Bülow M., Maximo G.J., Batista E.A.C., Held C., Pinho S.P., Coutinho J.A.P. Tunable hydrophobic eutectic solvents based on terpenes and monocarboxylic acid // ACS Sustain. Chem. Eng. 2018. V. 6. P. 8836. https://doi.org/10.1021/acssuschemeng.8b01203
  14. Taverniers I., De Loose M., Van Bockstaele E. Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance // Trends Anal. Chem. 2004. V. 23. P. 535. https://doi.org/10.1016/j.trac.2004.04.001
  15. Herrera-Herrera A.V., Hernández-Borges J., Borges-Miquel T.M., Rodríguez-Delgado M.Á. Dispersive liquid-liquid microextraction combined with ultra-high performance liquid chromatography for the simultaneous determination of 25 sulfonamide and quinolone antibiotics in water samples // J. Pharm. Biomed. Anal. 2013. V. 75. P. 130. https://doi.org/10.1016/j.jpba.2012.11.026
  16. Selahle S.K., Nomngongo P.N. Determination of fluoroquinolones in the environmental samples using vortex assisted dispersive liquid-liquid microextraction coupled with high performance liquid chromatography // Int. J. Environ. Anal. Chem. 2020. V. 100. P. 282. https://doi.org/10.1080/03067319.2019.1636042
  17. Herrera-Herrera A.V., Hernández-Borges J., Borges-Miquel T.M., Rodríguez-Delgado M.Á. Dispersive liquid–liquid microextraction combined with nonaqueous capillary electrophoresis for the determination of fluoroquinolone antibiotics in waters // Electrophoresis. 2010. V. 31. P. 3457. https://doi.org/10.1002/elps.201000285

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (107KB)
3.

Download (81KB)
4.

Download (61KB)
5.

Download (77KB)
6.

Download (83KB)
7.

Download (82KB)

Copyright (c) 2023 И.И. Тимофеева, К.А. Барбаянов, А.В. Булатов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies