Multilayer Coatings Based On Citrate-Stabilized Gold Nanoparticles and Polydiallyldimethylammonium Chloride for the Electrophoretic Separation of Carboxylic Acids

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The conditions for the formation of physically adsorbed three-layer coatings of quartz capillary walls in capillary electrophoresis (CE) with successively deposited oppositely charged layers of polydiallyldimethylammonium chloride (PDADMAC) modifiers and citrate-stabilized gold nanoparticles (GNPs) are proposed. It was shown that three-layer PDADMAC–GNP–PDADMAC coatings favorably differ from monolayer coatings with PDADMAC by greater stability in a wide range of pH (2–10). The formed coatings were characterized by scanning electron microscopy, and the presence of a uniform dense layer of nanoparticles on the capillary surface was confirmed. The applicability of the modified capillaries under CE conditions was demonstrated by the separation of a mixture of 16 carboxylic acids. An increase in the separation selectivity achieved with the use of three-layer coatings based on GNPs was explained by the reversible exchange of citrate anions on the GNP surface with negatively charged analytes in the course of electrophoretic analysis.

About the authors

D. V. Makeeva

St. Petersburg State University

Email: dasha.dzema@gmail.com
199034, St. Petersburg, Russia

K. S. Antipova

St. Petersburg State University

Email: dasha.dzema@gmail.com
199034, St. Petersburg, Russia

E. V. Solovyeva

St. Petersburg State University

Email: dasha.dzema@gmail.com
199034, St. Petersburg, Russia

V. P. Morgacheva

St. Petersburg State University

Email: dasha.dzema@gmail.com
199034, St. Petersburg, Russia

E. A. Kolobova

St. Petersburg State University

Email: dasha.dzema@gmail.com
199034, St. Petersburg, Russia

L. A. Kartsova

St. Petersburg State University

Author for correspondence.
Email: dasha.dzema@gmail.com
199034, St. Petersburg, Russia

References

  1. Карцова Л.А., Макеева Д.В., Бессонова Е.А. Современное состояние метода капиллярного электрофореза // Журн. аналит. химии. 2020. Т. 12. № 75. С. 1059.
  2. Kartsova L.A., Makeeva D.V., Davankov V.A. Capillary electrophoresis as a powerful tool for the analyses of bacterial samples // Trends Anal. Chem. 2019. V. 120. Article 115656. https://doi.org/10.1016/j.trac.2019.115656
  3. Ban E., Yoo Y.S., Song E.J. Analysis and application of nanoparticles in capillary electrophoresis // Talanta. 2015. V. 141. P. 15. https://doi.org/10.1016/j.talanta.2015.03.020
  4. Zhang Z., Yan B., Liu K., Liao Y., Liu H. CE-MS analysis of heroin and its basic impurities using a charged polymer-protected gold nanoparticle-coated capillary // Electrophoresis. 2009. V. 30. P. 379. https://doi.org/10.1002/elps.200800069
  5. Hamer M., Yone A., Rezzano I. Gold nanoparticle-coated capillaries for protein and peptide analysis on open-tubular capillary electrochromatography // Electrophoresis. 2021. V. 33. P. 334. https://doi.org/10.1002/elps.201100297
  6. Kang H., Buchman J.T., Rodriguez R.S., Ring H.L., He J., Bantz K.C., Haynes C.L. Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities // Chem. Rev. 2019. V. 119. № 1. P. 664. https://doi.org/10.1021/acs.chemrev.8b00341
  7. Neiman B., Grushka E., Lev O. Use of gold nanoparticles to enhance capillary electrophoresis // Anal. Chem. 2001. V. 73. P. 5220. https://doi.org/10.1021/ac0104375
  8. Yu C.J., Su C.L., Tseng W.L. Separation of acidic and basic proteins by nanoparticle-filled capillary electrophoresis // Anal. Chem. 2006. V. 78. P. 8004. https://doi.org/10.1021/ac061059c
  9. Subramaniam V., Griffith L., Haes A.J. Varying nanoparticle pseudostationary phase plug length during capillary electrophoresis // Analyst. 2011. V. 136. P. 3469. https://doi.org/10.1039/C1AN15185A
  10. Qu Q., Liu D., Mangelings D., Yang C., Hu X. Permanent gold nanoparticle coatings on polyelectrolyte multilayer modified capillaries for open-tubular capillary electrochromatography // J. Chromatogr. A. 2010. V. 1217. P. 6588. https://doi.org/10.1016/j.chroma.2010.08.057
  11. Robb C.S. Applications of physically adsorbed polymer coatings in capillary electrophoresis // J. Liq. Chromatogr. Relat. Technol. 2007. V. 30. № 5. P. 729. https://doi.org/10.1080/10826070701191029
  12. Morrison D.J., Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism // Gut Microbes. 2016. V. 7. P. 189. https://doi.org/10.1080/19490976.2015.1134082
  13. Zhang Q., Niu Y., Lyu W., Yu M. Formic acid up-regulates vascular tension through nitric oxide-cGMP signaling pathway // Chem. Biol. Interact. 2019. V. 309. Article 108710. https://doi.org/10.1016/j.cbi.2019.06.023
  14. Galland L. The gut microbiome and the brain // J. Med. Food. 2014. V. 17. P. 1261. https://doi.org/10.1089/jmf.2014.7000
  15. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions // Nat. Phys. Sci. 1973. V. 241. P. 20.
  16. Polikarpova D., Makeeva D., Kartsova L., Dolgonosov A., Kolotilina N. Nano-sized anion-exchangers as a stationary phase in capillary electrochromatography for separation and on-line concentration of carboxylic acids // Talanta. 2018. V. 188. P. 744. https://doi.org/10.1016/j.talanta.2018.05.094

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (291KB)
4.

Download (242KB)
5.

Download (2MB)
6.

Download (165KB)

Copyright (c) 2023 Д.В. Макеева, К.С. Антипова, Е.В. Соловьева, В.П. Моргачева, Е.А. Колобова, Л.А. Карцова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies