Use of Magnetic Carbon Nanocomposites in the Formation of a Recognition Layer of a Piezoelectric Immunosensor for the Determination of Penicillin G

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Conditions for the formation of a recognition layer of a piezoelectric immunosensor based on magnetic carbon nanocomposites (MCNCs) under the action of an external magnetic field are studied. The effects of the size and number of magnetic nanoparticles (MNPs) in the composite on the analytical characteristics of the gravimetric immunosensor are revealed. Scanning electron microscopy is used to determine the average sizes of Fe3O4 magnetic nanoparticles synthesized by coprecipitation. It is noted that the minimum weight and stability of the recognition layer were observed for the nanocomposite obtained at a ratio of carbon nanotubes and MNPs with an average diameter of 22 nm equal to 3 : 1. The formation of peptide bonds between the MCNCs and a penicillin G conjugate was established by IR spectrometry. It was shown that the use of magnetic carbon nanocomposites in the formation of a recognition layer makes it possible to significantly simplify the procedure for preparing a piezoelectric sensor for analysis and reduce its duration from 24 to 1.5 h. The range of the determined antibiotic concentrations is 1–450 ng/mL, the limit of detection is 0.5 ng/mL.

Sobre autores

E. Bizina

Lipetsk State Technical University

Email: katarina.bizina1821@mail.ru
398055, Lipetsk, Russia

O. Farafonova

Lipetsk State Technical University

Email: katarina.bizina1821@mail.ru
398055, Lipetsk, Russia

N. Zolotareva

Institute for Problems of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences

Email: katarina.bizina1821@mail.ru
142432, Chernogolovka, Moscow oblast, Russia

S. Grazhulene

Institute for Problems of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences

Email: katarina.bizina1821@mail.ru
142432, Chernogolovka, Moscow oblast, Russia

T. Ermolaeva

Lipetsk State Technical University

Autor responsável pela correspondência
Email: katarina.bizina1821@mail.ru
398055, Lipetsk, Russia

Bibliografia

  1. Gupta B.K., Yadav A., Koch P., Mishra P. Piezoelectric biosensors: Principle, techniques, and their application in food analysis / Biosensors in Food Safety and Quality / Eds. Mishra P., Sahu P.P. CRC Press, 2022. P. 37.
  2. Zhang J., Zhang X., Wei X., Xue Y., Wan H., Wang P. Recent advances in acoustic wave biosensors for the detection of disease-related biomarkers: A review // Anal. Chim. Acta. 2021. V. 1164. Article 338321.
  3. Гулий О.И., Зайцев Б.Д., Алсовэйди А.К.М., Караваева О.А., Ловцова Л.Г., Бородина И.А. Биосенсорные системы для определения антибиотиков // Биофизика. 2021. Т. 66. № 4. С. 657. (Guliy O.I., Karavaeva O.A., Lovtsova L.G., Zaitsev B.D., Borodina I.A., Alsowaidi A.K.M. Biosensor systems for antibiotic detection // Biophysics. 2021. V. 66. № 4. С. 555.)
  4. Алсовэйди А.К.М., Караваева О.А., Гулий О.И. Методы и подходы для определения антибиотиков // Антибиотики и химиотерапия. 2022. Т. 67. № 1–2. С. 53.
  5. Ермолаева Т.Н., Калмыкова Е.Н., Шашканова О.Ю. Пьезоэлектрические биосенсоры для анализа объектов окружающей среды, пищевых продуктов и клинической диагностики // Рос. хим. журн. 2008. Т. 52. № 2. С. 17. (Ermolaeva T.N., Kalmykova E.N., Shashkanova O.Y. Piezoquartz biosensors for the analysis of environmental objects, foodstuff and for clinical diagnostic // Russ. J. Gen. Chem. 2008. V. 78. № 12. P. 2430.)
  6. Tripathi A., Melo J.S. Immobilization Strategies. Biomedical, Bioengineering and Environmental Applications. Springer, 2021. P. 666.
  7. Karaseva N.A., Ermolaeva T.N. Piezoelectric immunosensors for the detection of individual antibiotics and the total content of penicillin antibioticsin foodstuffs // Talanta. 2014. V. 120. P. 312.
  8. Pohanka M. Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications // Materials. 2018. V. 11 № 3. P. 448.
  9. Шукшина Е.И., Фарафонова О.В., Шанин И.А., Гражулене С.С., Еремин С.А., Ермолаева Т.Н. Аффинные взаимодействия на поверхности пьезоэлектрического сенсора, модифицированного углеродными нанотрубками, при определении фторхинолонов // Сорбционные и хроматографические процессы. 2018. Т. 18. № 3. С. 394.
  10. Tajyani S., Babaei A. A new sensing platform based on magnetic Fe3O4@NiO core/shell nanoparticles modified carbon paste electrode for simultaneous voltammetric determination of Quercetin and Tryptophan // J. Electroanal. Chem. 2018. V. 808. P. 50.
  11. Santos A.M., Wong A., Prado T.M., Fava E.L., Fatibello-Filho O., Sotomayor M.D.P.T., Moraes F.C. Voltammetric determination of ethinylestradiol using screen-printed electrode modified with functionalized graphene, graphene quantum dots and magnetic nanoparticles coated with molecularly imprinted polymers // Talanta. 2021. V. 224. Article 121804.
  12. Sohouli E., Khosrowshahi E.M., Radi P., Naghian E., Rahimi-Nasrabadi M., Ahmadi F. Electrochemical sensor based on modified methylcellulose by graphene oxide and Fe3O4 nanoparticles: Application in the analysis of uric acid content in urine // J. Electroanal. Chem. 2020. V. 877. Article 114503.
  13. Reddy K.R., Reddy P.A., Reddy C.V., Shetti N.P., Babu B., Ravindranadh K., Shankar M.V., Reddy M.C., Soni S., Naveen S. Functionalized magnetic nanoparticles/biopolymer hybrids: Synthesis methods, properties and biomedical applications // Methods Microbiol. 2019. V. 46. P. 227.
  14. Kouhpanji M.R.Z., Stadler B.J.H. A guideline for effectively synthesizing and characterizing magnetic nanoparticles for advancing nanobiotechnology: A Review // Sensors. 2020. V. 20. № 9. P. 2554.
  15. Bayramoglu G., Ozalp V.C., Oztekin M., Arica M.Y. Rapid and label-free detection of Brucella melitensis in milk and milk products using an aptasensor // Talanta. 2019. V. 200. P. 263.
  16. Pohanka M. QCM immunosensor for the determination of Staphylococcus aureus antigen // Chem. Pap. 2020. V. 74. P. 451.
  17. Wan Y., Zhang D., Hou B. Determination of sulphate-reducing bacteria based on vancomycin-functionalised magnetic nanoparticles using a modification-free quartz crystal microbalance // Biosens. Bioelectron. 2010. V. 25. P. 1847.
  18. Бизина Е.В., Фарафонова О.В., Золотарева Н.И., Гражулене С.С., Ермолаева Т.Н. Пьезоэлектрический иммуносенсор на основе магнитных углеродных нанокомпозитов для определения ципрофлоксацина // Журн. аналит. химии. 2022. Т. 77. № 4. С. 375. (Bizina E.V., Farafonova O.V., Zolotareva N.I., Grazhulene S.S., Ermolaeva T.N. A piezoelectric immunosensor based on magnetic carbon na-nocomposites for the determination of ciprofloxacin // J. Anal. Chem. 2022. V. 77. № 4. P. 375.)
  19. Гражулене С.С., Золотарева Н.И., Редькин А.Н., Шилкина Н.Н., Митина А.А., Ходос И.И. Сорбционные свойства магнитного композита на основе модифицированных углеродных нанотрубок в зависимости от условий синтеза // Журн. прикл. химии. 2020. Т. 93. № 1. С. 66. (Grazhulenea S.S., Zolotareva N.I., Red’kin A.N., Shilkina N.N., Mitina A.A., Khodos I.I. sorption properties of a magnetic composite based on modifi ed carbon nanotubes: Influence of the synthesis conditions // Russ. J. Appl. Chem. 2020. V. 93. № 1. P. 57.)
  20. Sauerbrey G. Verwendung von Schwingquarzen zur Wigung dunner Schichten und zur Mikrowigung // Zeitschrift für Physik. 1959. V. 55. P. 206.
  21. Гражулене С.С., Золотарева Н.И., Редькин А.Н., Шилкина Н.Н., Митина А.А., Колесникова А.М. Магнитный сорбент на основе магнетита и модифицированных углеродных нанотрубок для извлечения некоторых токсичных элементов // Журн. прикл. химии. 2018. Т. 91. № 11. С. 1642. (Grazhulene S.S., Zolotareva N.I., Red’kin A.N., Shilkina N.N., Mitina A.A., Kolesnikova A.M. Magnetic sorbent based on magnetite and modified carbon nanotubes for extraction of some toxic elements // Russ. J. Appl. Chem. 2018. V. 91. № 11. P. 1849.)
  22. Wang J., Zheng S., Shao Y., Liu J., Xu Z., Zhu D. Amino-functionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal // J. Colloid Interface Sci. 2010. V. 349. P. 293.
  23. Singh S., Barick K.C., Bahadur D. Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens // J. Hazard. Mater. 2011. V. 192. P. 1539.
  24. Eguílaz M., Villalonga R., Yanez–Sedeno P., Pingarron J.M. Designing electrochemical interfaces with functionalized magnetic nanoparticles and wrapped carbon nanotubes as platforms for the construction of high-performance bienzyme biosensors // Anal. Chem. 2011. V. 83. P. 7807.
  25. Mikhaylova M., Kim D.K., Berry C.C., Zagorodni A., Toprak M., Curtis A.S.G., Muhammed M. BSA immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles // Chem. Mater. 2004. V. 16. № 12. P. 2344.
  26. Netto C.G.C.M., Toma H.E, Andrade L.H. Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes // J. Mol. Catal. B: Enzym. 2013. V. 85. P. 71.
  27. Нартова Ю.В., Еремин С.А., Ермолаева Т.Н. Массочувствительные иммуносенсоры для определения хлорацетанилидных гербицидов // Журн. аналит. химии. 2008. Т. 63. № 12. С. 1302. (Nartova Yu.V., Ermolaeva T.N., Eremin S.A. Mass-sensitive immunosensors for determining chloroacetanilide herbicides // J. Anal. Chem. 2008. V. 63. № 12. P. 1191.)
  28. Гражулене С.С., Золотарева Н.И., Редькин А.Н., Шилкина Н.Н., Митина А.А., Ходос И.И. Сорбционные свойства магнитного композита на основе модифицированных углеродных нанотрубок в зависимости от условий синтеза // Журн. прикл. химии. 2020. Т. 93. № 1. С. 66. (Grazhulene S.S., Zolotareva N.I., Red’kin A.N., Shilkina N.N., Mitina A.A., Khodos I.I. Sorption properties of a magnetic composite based on modified carbon nanotubes: Influence of the synthesis conditions // Russ. J. Appl. Chem. 2020. V. 93. № 1. P. 57.)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (151KB)
3.

Baixar (894KB)
4.

Baixar (127KB)
5.

Baixar (339KB)
6.

Baixar (193KB)

Declaração de direitos autorais © Е.В. Бизина, О.В. Фарафонова, Н.И. Золотарева, С.С. Гражулене, Т.Н. Ермолаева, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies