Using Smartphones in Chemical Analysis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review covers the current status and prospects for the development of digital colorimetry using a smartphone as a color recording device. The applications of the rapid analysis methodology for the control of environmental samples, biological fluids, food products, drugs, and some specific samples are systematized. Various approaches are considered, ensuring the formation of an analytical signal in digital colorimetry. The capabilities (advantages and disadvantages) of a smartphone equipped with various software products make it a universal, mobile, rapid, and sensitive tool in the analysis of various samples.

About the authors

Z. A. C. Shogah

Vladimir State University

Email: amelinvg@mail.ru
600000, Vladimir, Russia

D. S. Bolshakov

Center for Hygiene and Epidemiology in the Vladimir Region

Email: amelinvg@mail.ru
600005, Vladimir, Russia

V. G. Amelin

Vladimir State University

Author for correspondence.
Email: amelinvg@mail.ru
600005, Vladimir, Russia

References

  1. Rezazadeh M., Seidi Sh., Lid M., Pedersen-Bjergaard S., Yamini Y. The modern role of smartphones in analytical chemistry // Trends Anal. Chem. 2019. V. 118. P. 548.
  2. Моногарова О.В., Осколок К.В., Апяри В.В. Цветометрия в химическом анализе // Журн. аналит. химии. 2018. Т. 73. № 11. С. 857.
  3. Апяри В.В., Горбунова М.В., Исаченко А.И., Дмитриенко С.Г., Золотов Ю.А. Использование бытовых цветорегистрирующих устройств в количественном химическом анализе // Журн. аналит. химии. 2017. Т. 72. № 11. С. 963.
  4. Иванов В.М., Кузнецова О.В. Химическая цветометрия: возможности метода, области применения и перспективы // Успехи химии. 2001. Т. 70. № 5. С. 411.
  5. Huang X., Xu D., Chen J., Liu J., Li Y., Song J., Ma X., Guo J. Smartphone-based analytical biosensors // Analyst. 2018. V. 143. P. 5339.
  6. Vidal E., Lorenzetti A.S., Aguirre M.A., Canals A., Domini C.E. New, inexpensive and simple 3D printable device for nephelometric and fluorimetric determination based on smartphone sensing // RSC Adv. 2020. V. 10. P. 19713.
  7. Da Silva G.O., De Araujo W.R., Paixao T.R.L.C. Portable and low-cost colorimetric office paper-based device for phenacetin detection in seized cocaine samples // Talanta. 2018. V. 176. P. 674.
  8. Adkins J.A., Boehle K., Friend C., Chamberlain B., Bisha B., Henry C.S. Colorimetric and electrochemical bacteria detection using printed paper- and transparency-based analytic devices // Anal. Chem. 2017. V. 89. P. 3613.
  9. Nogueira S.A., Sousa L.R., Silva N.K.L., Rodrigues P.H.F., Coltro W.K.T. Monitoring acid-base titrations on wax printed paper microzones using a smartphone // Micromachines. 2017. V. 8. P. 139.
  10. Merli D., Profumo A., Tinivella S., Protti S. From smart drugs to smartphone: A colorimetric spot test for the analysis of the synthetic cannabinoid AB-001 // Forensic Chem. 2019. V. 14. Article 100167.
  11. Jaikang P., Wangkarn S., Paengnakorn P., Grudpan K. Microliter operation for determination of nitrate-nitrogen via simple zinc reduction and color formation in a well plate with a smartphone // Anal. Sci. 2019. V. 35. P. 421.
  12. Shalaby A.A., Mohamed A.A. Sensitive assessment of hexavalent chromium using various uniform and non-uniform color space signals derived from digital images // Water. Air. Soil. Pollut. 2020. V. 231. Article 516.
  13. Coutinho M.S., Morais C.L.M., Neves A.C.O., Menezes F.G., Lima K.M.G. Colorimetric determination of ascorbic acid based on its interfering effect in the enzymatic analysis of glucose: an approach using smartphone image analysis // J. Braz. Chem. Soc. 2017. V. 28. № 12. P. 2500.
  14. Pessoa K.D., Suarez W.T., dos Reis M.F., de Oliveira Krambeck Franco M., Moreira R.P.L., dos Santos V.B. A digital image method of spot tests for determination of copper in sugar cane spirits // Spectrochim. Acta A. 2017. V. 185. P. 310.
  15. Ravazzi C.G., Franco M.D.O.K., Vieira M.C.R., Suarez W.T. Smartphone application for captopril determination in dosage forms and synthetic urine employing digital imaging // Talanta. 2018. V. 189. P. 339.
  16. Santos V.B.D., Silva E.K.N.D., Oliveira L.M.A.D., Suarez W.T. Low cost in situ digital image method, based on spot testing and smartphone images, for determination of ascorbic acid in Brazilian Amazon native and exotic fruits // Food Chem. 2019. V. 285. P. 340.
  17. Амелин В.Г., Шаока З.А.Ч., Большаков Д.С. Использование смартфона для определения тетрациклинов в воде и молоке по сенсибилизированной твердофазной флуоресценции европия на его гидроксиде // Журн. аналит. химии. 2021. Т. 76. № 10. С. 952.
  18. Амелин В.Г., Шаока З.А.Ч., Большаков Д.С., Третьяков А.В. Использование смартфона и хемометрического анализа для определения тетрациклинов в природной воде по сенсибилизированной твердофазной флуоресценции европия на его гидроксиде // Заводск. лаборатория. Диагностика материалов. 2022. Т. 88. № 5. С. 5.
  19. Амелин В.Г., Шаока З.А.Ч., Большаков Д.С. Сорбционно-флуориметрическое определение хинолонов в сточных и природных водах с использованием смартфона // Вестн. Моск. ун-та. Серия 2. Химия. 2021. Т. 62. № 4. С. 371.
  20. Амелин В.Г., Шаока З.А.Ч., Большаков Д.С., Третьяков А.В. Сорбционно-флуориметрическое определение фторхинолонов в природных водах с использованием смартфона и хемометрического анализа // Сорбционные и хроматографические процессы. 2022. Т. 22. № 2. С. 126.
  21. Sumriddetchkajorna S., Chaitavon K., Intaravanne Y. Mobile device-based self-referencing colorimeter for monitoring chlorine concentration in water // Sens. Actuators B: Chem. 2013. V. 182. P. 592.
  22. Moonrungsee N., Pencharee S., Jakmunee J. Colorimetric analyzer based on mobile phone camera for determination of available phosphorus in soil // Talanta. 2015. V. 136. P. 204.
  23. Levin S., Krishnan S., Rajkumar S., Halery N., Balkunde P. Monitoring of fluoride in water samples using a smartphone // Sci. Total Environ. 2016. V. 551–552. P. 101.
  24. Kilic V., Alankus G., Horzum N., Mutlu A.Y., Bayram A., Solmaz M.E. Single-image-referenced colorimetric water quality detection using a smartphone // ACS Omega. 2018. V. 3. № 5. P. 5531.
  25. Lima M.J.A., Nascimento C.F., Rocha F.R.P. Feasible photometric measurements in liquid-liquid extraction by exploiting smartphone-based digital images // Anal. Methods. 2017. V. 9. № 14. P. 2220.
  26. Shahvar A., Saraji M., Shamsaei D. Headspace single drop microextraction combined with mobile phone-bas ed on-drop sensing for the determination of formaldehyde // Sens. Actuators B: Chem. 2018. V. 273. P. 1474.
  27. Moslemzadeh M., Larki A., Ghanemi K. A combination of dispersive liquid–liquid microextraction and smartphone-based colorimetric system for the phenol measurement // Microchem. J. 2020. V. 159. Article 105583.
  28. Khoshmaram L., Mohammedi M. Combination of a smart phone based low-cost portable colorimeter with air-assisted liquid-liquid microextraction for speciation and determination of chromium (III) and (VI) // Microchem. J. 2021. V. 164. Article 105991.
  29. Peng B., Xu J., Fan M., Guo Y., Ma Y., Zhou M., Fang Y. Smartphone colorimetric determination of hydrogen peroxide in real samples based on B, N, and S co-doped carbon dots probe // Anal. Bioanal. Chem. 2020. V. 412. P. 861.
  30. Acevedo M.S.F., Lima M.J.A., Nascimento C.F., Rocha F.R.P. A green and cost-effective procedure or determination of anionic surfactants in milk with liquid-liquid microextraction and smartphone-based photometric detection // Microchem. J. 2018. V. 143. P. 259.
  31. De Oliveira Krambeck Franco M., Suarez W.T., dos Santos V.B. Digital image method smartphone-based for furfural determination in sugarcane spirits // Food Anal. Methods. 2017. V. 10. P. 508.
  32. Soares S., Campos K.R.R., Melchert W.R., Rocha F.R.P. A spot test for total esters determination in sugarcane spirits exploiting smartphone-based digital images // Anal. Methods. 2020. V. 12. P. 3918.
  33. Perez-Bernal J.L., Villar-Navarro M., Morales M.L., Ubeda C., Callejon R.M. The smartphone as an economical and reliable tool for monitoring the browning process in sparkling wine // Comput. Electron Agric. 2017. V. 141. P. 248.
  34. De Oliveira Krambeck Franco M., Suarez W.T., Maia M.V., Dos Santos V.B. Smartphone application for methanol determination in sugar cane spirits employing digital image-based method // Food. Anal. Methods. 2017. V. 10. № 6. P. 2102.
  35. Masawat P., Harfield A., Namwong A. An iPhone-based digital image colorimeter for detecting tetracycline in milk // Food Chem. 2015. V. 184. P. 23.
  36. Maroubo L.A., Pedrina G., Melchert W.R. Total sulfonamides determination in bovine milk using smartphone-based digital images // Microchem. J. 2021. V. 170. Article 106657.
  37. Peng B., Zhou J., Xu J., Fan M., Ma Y., Zhou M., Li T., Zhao S. A smartphone-based colorimetry after dispersive liquid-liquid microextraction for rapid quantification of calcium in water and food samples // Microchem. J. 2019. V. 149. Article 104072.
  38. Lamarca R.S., Luchiari N.D.C., Bonjorno A.F., Filho J.P., Cardoso A.A., Gomes P.C.F.L. Determination of formaldehyde in cosmetic products using gas-diffusion microextraction coupled with a smartphone reader // Anal. Methods. 2019. V. 11. P. 3697.
  39. Soares S., Nunes L.C., Melchert W.R., Rocha F.R.P. Spot test exploiting smartphone-based digital images for determination of biodiesel in diesel blends // Microchem. J. 2020. V. 152. Article 104273.
  40. Resque I.S., Dos Santos V.B., Suarez W.T. An environmentally friendly analytical approach based on spot test and digital image to evaluate the conformity of bleaching products // Chem. Pap. 2019. V. 73. № 7. P. 1659.
  41. Soares S., Fernandes G.M., Moraes L.M.B., Batista A.D., Rocha F.R.P. Single-phase determination of calcium and magnesium in biodiesel using smartphone-based digital images // Fuel. 2022. V. 307. Article 121837.
  42. Sun H., Jia Y., Dong H., Fan L., Zheng J. Multiplex quantification of metals in airborne particulate matter via smartphone and paperbased microfluidics // Anal. Chim. Acta. 2018. V. 1044. P. 110.
  43. Wei Q., Nagi R., Sadeghi K., Feng S., Yan E., Jung Ki S., Caire R., Tseng D., Ozcan A. Detection and spatial mapping of mercury contamination in water samples using a smart-phone // ACS Nano. 2014. V. 8. № 2. P. 1121.
  44. Garcia A., Erenas M.M., Marinetto E.D., Abad C.A., de Orbe-Paya I., Palma A.J., Capitan-Vallvey L.F. Mobile phone platform as portable chemical analyzer // Sens. Actuators B: Chem. 2011. V. 156. P. 350.
  45. Salles M.O., Meloni G.N., De Araujo W.R., Paixao T.R.L.C. Explosive colorimetric discrimination using a smartphone, paper device and chemometrical approach // Anal. Methods. 2014. V. 6. № 7. P. 2047.
  46. Sicard C., Glen C., Aubie B., Wallace D., Jahanshahi-Anbuhi S., Pennings K., Daigger G.T., Pelton R., Brennan J.D., Filipe C. Tools for water quality monitoring and mapping using paper-based sensors and cell phones // Water Research. 2015. V. 70. P. 360.
  47. Oncescu V., Mancuso M., Erickson D. Cholesterol testing on a smartphone // Lab Chip. 2014. V. 14. P. 759.
  48. Jia Y., Sun H., Li X., Sun D., Hu T., Xiang N., Ni Z. Paper-based graphene oxide biosensor coupled with smartphone for the quantification of glucose in oral fluid // Biomed. Microdevices. 2018. V. 20. P. 89.
  49. Oncescu V., O’Dell D., Erickson D. Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva // Lab Chip. 2013. V. 13. № 16. P. 3232.
  50. Bueno L., Meloni G.N., Reddy S.M., Paixao T.R.L.C. Use of plastic-based analytical device, smartphone and chemometric tools to discriminate amines // RSC Adv. 2015. V. 5. P. 20148.
  51. Cao Y., Liu Y., Li F., Guo S., Shui Y., Xue H., Wang L. Portable colorimetric detection of copper ion in drinking water via red beet pigment and smartphone // Microchem. J. 2019. V. 150. Article 104176.
  52. Lee S., Kim G., Moon J. Performance improvement of the one-dot lateral flow immunoassay for aflatoxin B1 by using a smartphone based reading system // Sensors. 2013. V. 13. № 4. P. 5109.
  53. Shahvar A., Saraji M., Gordan H., Shamsaei D. Combination of paper-based thin film microextraction with smartphone-based sensing for sulfite assay in food samples // Talanta. 2019. V. 197. P. 578.
  54. Li X., Wang J., Yi C., Jiang L., Wu J., Chen X., Shen X., Sun Y., Lei H. A smartphone-based quantitative detection device integrated with latex microsphere immunochromatography for on-site detection of zearalenone in cereals and feed // Sens. Actuators B: Chem. 2019. V. 290. P. 170.
  55. Liu C., Wang Y., Fu L., Chen K. Microfluidic paper-based chip platform for benzoic acid detection in food // Food Chem. 2018. V. 249. P. 162.
  56. Lopez-Ruiz N., Martinez-Olmos A., de Vargas-Sansalvador I.M.P., Fernandez-Ramos M.D., Carvajal M.A., Capitan-Vallvey L.F., Palma A.J. Determination of O2 using colour sensing from image processing with mobile devices // Sens. Actuators B: Chem. 2012. V. 171–172. P. 938.
  57. Böck F.C., Helfer G.A., Costa A., Dessuy M.B., Ferrao M.F. PhotoMetrix and colorimetric image analysis using smartphones // J. Chemom. 2020. https://doi.org/10.1002/cem.3251
  58. Li F., Hu Y., Li Z., Liu J., Lei Guo L., He J. Three-dimensional microfluidic paper-based device for multiplexed colorimetric detection of six metal ions combined with use of a smartphone // Anal. Bioanal. Chem. 2019. V. 411. P. 6497.
  59. Muhammad-aree S., Teepoo S. On-site detection of heavy metals in wastewater using a single paper strip integrated with a smartphone // Anal. Bioanal. Chem. 2020. V. 412. P. 1395.
  60. Sun H., Li W., Dong Z., Hu C., Leung C., Ma D., Ren K. A suspending-droplet mode paper-based microfluidic platform for low-cost, rapid, and convenient detection of lead (II) ions in liquid solution // Biosens. Bioelectron. 2018. V. 99. P. 361.
  61. Kang S., Jang S., Haldorai Y.,Vilian A.T.E., Rethinasabapathy M., Roh C., Han Y., Huh Y.S. Facile fabrication of paper-based analytical devices for rapid and highly selective colorimetric detection of cesium in environmental samples // RSC Adv. 2017. V. 7. P. 48374.
  62. Jarujamrus P., Meelapsom R., Pencharee S., Obma A., Amatatongchai M., Ditcharoen N., Chairam S., Tamuang S. Use of a smartphone as a colorimetric analyzer in paper-based devices for sensitive and selective determination of mercury in water samples // Anal. Sci. 2018. V. 34. P. 75.
  63. Cheng N., Xu Y., Huang K., Chen Y., Yang Z., Luo Y., Xu W. One-step competitive lateral flow biosensor running on an independent quantification system for smart phones based in-situ detection of trace Hg(II) in tap water // Food Chem. 2017. V. 214. P. 169.
  64. Moraes E.P., da Silva N.S.A., de Morais C. de L.M., das Neves L.S., de Lima K.M.G. Low-cost method for quantifying sodium in coconut water and seawater for the undergraduate analytical chemistry laboratory: flame test, a mobile phone camera, and image processing // J. Chem. Educ. 2014. V. 91. № 11. P. 1958.
  65. Shen L., Hagen J.A., Papautsky I. Point-of-care colorimetric detection with a smartphone // Lab Chip. 2012. V. 12. P. 4240.
  66. Sankar K., Lenisha D., Janaki G., John J. Rajaram S.K., Selvi M.C., Srinivasan G. Digital image-based quantification of chlorpyrifos in water samples using a lipase embedded paper based device // Talanta. 2020. V. 208. Article 120408.
  67. Ansari N., Lodha A., Pandyac A., Menon S.K. Determination of cause of death using paper-based microfluidic device as a colorimetric probe // Anal. Methods. 2017. V. 9. P. 5632.
  68. Liu C., Gomez F.A., Miao Y., Cui P., Lee W. A colorimetric assay system for dopamine using microfluidic paper-based analytical devices // Talanta. 2019. V. 194. P. 171.
  69. Lee S., Oncescu V., Mancuso M., Mehta S., Erickson D. A smartphone platform for the quantification of vitamin D levels // Lab Chip. 2014. V. 14. P. 1437.
  70. Fashi A., Cheraghi M., Ebadipur H., Ebadipur H., Zamani A., Badiee H., Pedersen-Bjergaard S. Exploiting agarose gel modified with glucose-fructose syrup as a green sorbent in rotating-disk sorptive extraction technique for the determination of trace malondialdehyde in biological and food samples // Talanta. 2020. V. 217. Article 121001.
  71. Zhang C., Kim J.P., Creer M., Yang J., Liu Z. A smartphone-based chloridometer for point-of-care diagnostics of cystic fibrosis // Biosens. Bioelectron. 2017. V. 9. P. 164.
  72. Calabria D., Caliceti C., Zangheri M., Mirasoli M., Simoni P., Roda A. Smartphone-based enzymatic biosensor for oral fluid L-lactate detection in one minute using confined multilayer paper reflectometry // Biosens. Bioelectron. 2017. V. 94. P. 124.
  73. Jalal U.M., Jin G.J., Shim J.S. Paper-plastic hybrid microfluidic device for smartphone-based colorimetric analysis of urine // Anal. Chem. 2017. V. 89. P. 13160.
  74. Wang X., Li F., Cai Z., Liu K., Li J., Zhang B., He J. Sensitive colorimetric assay for uric acid and glucose detection based on multilayer-modified paper with smartphone as signal readout // Anal. Bioanal. Chem. 2018. V. 410. P. 2647.
  75. Shrivas K., Monisha, Kant T., Karbhal I., Kurrey R., Sahu B., Sinha D., Patra G.K., Deb M.K., Pervez S. Smartphone coupled with paper-based chemical sensor for on-site determination of iron (III) in environmental and biological samples // Anal. Bioanal. Chem. 2020. V. 412. P. 1573.
  76. He J., Xiao G., Chen X., Qiao Y., Xu D., Lu Z. A thermoresponsive microfluidic system integrating a shape memory polymer-modified textile and a paper-based colorimetric sensor for the detection of glucose in human sweat // RSC Adv. 2019. V. 9. P. 23957.
  77. Rasouli Z., Ghavami R. Simultaneous optical detection of human serum albumin and transferrin in body fluids // Microchim. Acta. 2020. V. 187. P. 208.
  78. Abaoag C.J., Alforque R., Ordono J.B., Quinto E. Non-invasive detection of human body liquor intake based on optical biosensor / MATEC Web of Conferences (The 24th Regional Symposium on Chemical Engineering (RSCE 2017)). 2018. V. 156. Article 05005.
  79. Koh A., Kang D., Xue Y., Lee S., Pielak R.M., Kim J., Hwang T., Min S., Banks A., Bastien P., Manco M.C., Wang L., Ammann K.R., Jang K.I., Won P., Han S., Ghaffari R., Paik U., Slepian M.J., Balooch G., Huang Y., Rogers J.A. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat // Sci. Transl. Med. 2016. V. 8. № 366. P. 1.
  80. Лаврухина О.И., Амелин В.Г., Прохватилова Л.Б., Ручнова О.И. Риски загрязнения пищевых продуктов на различных стадиях их производства // Ветеринария сегодня. 2017. № 3 (22). С. 33.
  81. Oliveira L.M.A., Santos V.B., Silva E.K.N., Lopes A.S., Dantas-Filho H.A. An environment-friendly spot test method with digital imaging for the micro-titration of citric fruits // Talanta. 2020. V. 206. Article 120219.
  82. Calabria D., Mirasoli M., Guardigli M., Simoni P., Zangheri M., Severi P., Caliceti C., Roda A. Paper-based smartphone chemosensor for reflectometric on-site total polyphenols quantification in olive oil // Sens. Actuators B: Chem. 2020. V. 305. Article 127522.
  83. Luchiari N. da C., da Silva G.A., Marasco Jr. C.A., Gomes P.C.F. de L. Development of miniaturized fluorimetric device for caffeine determination using a smartphone // RSC Adv. 2019. V. 9. P. 35033.
  84. Mahato K., Chandra P. Paper-based miniaturized immunosensor for naked eye ALP detection based on digital image colorimetry integrated with smartphone // Biosens. Bioelectron. 2019. V. 128. P. 9.
  85. Li Z., Li Z., Zhao D., Wen F., Jiang J., Xu D. Smartphone-based visualized microarray detection for multiplexed harmful substances in milk // Biosens. Bioelectron. 2017. V. 87. P. 874.
  86. Valek T., Valkova P., Pohanka M. Colorimetric method for the determination of proteins using immobilized microbial protease and a smartphone camera // Anal. Lett. 2021. V. 54. P. 1023.
  87. Yu L., He C., Zheng Q., Feng L., Xiong L., Xiao Y. Dual Eu-MOFs based logic device and ratiometric fluorescence paper microchip for visual H2O2 assay // J. Mater. Chem. 2020. V. 8. P. 3562.
  88. Zeng X., Hu J., Zhang M., Wang F., Wu L., Hou X. Visual detection of fluoride anions using mixed lanthanide metal-organic frameworks with a smartphone // Anal. Chem. 2020. V. 92. № 2. P. 2097.
  89. Shrivas K., Monisha, Patel S., Thakur S.S., Shankar R. Food safety monitoring of the pesticide phenthoate using a smartphone-assisted paper-based sensor with bimetallic Cu@Ag core-shell nanoparticles // Lab. Chip. 2020. V. 20. P. 3996.
  90. Botelho B.G., Dantas K.C.F., Sena M.M. Determination of allura red dye in hard candies by using digital images obtained with a mobile phone and N-PLS // Chemom. Intel. Lab. Syst. 2017. V. 167. P. 44.
  91. Fang J., Qiu X., Wan Z., Zou Q., Su K., Hu N., Wang P. A sensing smartphone and its portable accessory for on-site rapid biochemical detection of marine toxins // Anal. Methods. 2016. V. 8. № 38. P. 6895.
  92. Lin B., Yu Y., Cao Y., Guo M., Zhu D., Dai J., Zheng M. Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry bysmartphone // Biosens. Bioelectron. 2018. V. 100. № 378. P. 482.
  93. Coskun A.F., Wong J., Khodadadi D., Nagi R., Tey A., Ozcan A. A personalized food allergen testing platform on a cellphone // Lab. Chip. 2013. V. 13. № 4. P. 636.
  94. Khoshmaram L., Mohammadi M., Babadi A.N. A portable low-cost fluorimeter based on LEDs and a smart phone // Microchem. J. 2021. V. 171. Article 106773.
  95. Sergeyeva T.A., Yarynka D., Piletska E., Linnik R., Zaporozhets O., Brovko O., Piletsky S.A., El’skaya A.V. Development of a smartphone-based biomimetic sensor for aflatoxin B1 detection using molecularly imprinted polymer membranes // Talanta. 2019. V. 201. P. 204.
  96. Hu X., Shi J., Shi Y., Xiaobo Z., Arslan M., Zhang W., Xiaowei H., Zhihua L., Xu Y. Use of a smartphone for visual detection of melamine in milk based on Au@Carbon quantum dots nanocomposites // Food Chem. 2019. V. 272. P. 58.
  97. Yang N., Xie L., Pan C., Yuan M., Tao Z., Mao H. A novel on-chip solution enabling rapid analysis of melamine and chloramphenicol in milk by smartphones // J. Food Process Eng. 2018. V. 42. Article e12976.
  98. Li Y., He L., Ge Y., Song G., Zhou J. Smartphone-assisted visual ratio-fluorescence detection of hypochlorite based on copper nanoclusters // Spectrochim. Acta A. 2021. V. 255. Article 119740.
  99. Zangheri M., Nardo F.D., Calabria D., Marchegiani E., Anfossi L., Guardigli M., Mirasole M., Baggiani C., Roda A. Smartphone biosensor for point-of-need chemiluminescence detection of ochratoxin A in wine and coffee // Anal. Chim. Acta. 2021. V. 1163. Article 338515.
  100. Амелин В.Г., Шаока З.А.Ч., Большаков Д.С. Микроэкстракционно-цветометрическое (флуориметрическое) определение катионных и анионных ПАВ в пищевых продуктах // Журн. аналит. химии. 2021. Т. 76. № 3. С. 234.
  101. Thom N.K., Lewis G.G., Yeung K., Phillips S.T. Quantitative fluorescence assays using a self-powered paper-based microfluidic device and a camera-equipped cellular phone // RSC Adv. 2014. V. 4. P. 1334.
  102. Kaoutit E.H., Estevez P., Garcia F.C., Serna F., Garcia J.M. Sub-ppm quantification of Hg(II) in aqueous media using both the naked eye and digital information from pictures of a colorimetric sensory polymer membrane taken with the digital camera of a conventional mobile phone // Anal. Methods. 2013. V. 5. P. 54.
  103. Joao A.F., Squissato A.L., Fernandes G.M., Cardoso R.M., Batista A.D., Munoz R.A.A. Iron(III) determination in bioethanol fuel using a smartphone-based device // Microchem. J. 2019. V. 146. P. 1134.
  104. Koesdjojo M.T., Pengpumkiat S., Wu Y., Boonloed A., Huynh D., Remcho T.P., Remcho V.T. Cost effective paper-based colorimetric microfluidic devices and mobile phone camera readers for the classroom // J. Chem. Educ. 2015. V. 92. № 4. P. 737.
  105. Kumar A., Sahoo P.R., Arora P., Kumar S. A light controlled, sensitive, selective and portable spiropyran based receptor for mercury ions in aqueous solution // J. Photochem. Photobiol. 2019. V. 384. Article 112061.
  106. Espino M., Fernandez M.D.L.A., Silva M.F., Gomez F.J.V. Paper microzone plates integrating natural deep eutectic solvents: Total phenolic compounds and antioxidant capacity as performed by nature // Microchem. J. 2020. V. 158. Article 105296.
  107. Государственная Фармакопея Российской Федерации. XIV изд. Т. I. М.: Научный центр экспертизы средств медицинского применения, 2018. 1814 с.
  108. Государственная Фармакопея Российской Федерации. XIV изд. Т. III. М.: Научный центр экспертизы средств медицинского применения, 2018. 5187 с.
  109. ГОСТ Р 52249-2009. Правила производства и контроля качества лекарственных средств. М.: Стандартинформ, 2010. 139 с.
  110. Амелин В.Г., Шаока З.А.Ч., Большаков Д.С. Твердофазно-флуориметрическое определение тетрациклинов на целлюлозной бумаге и тонком слое силикагеля в лекарственных препаратах с использованием смартфона // Хим.-фарм. журн. 2021. Т. 55. № 3. С. 52.
  111. Амелин В.Г., Шаока З.А.Ч., Большаков Д.С. Твердофазно-флуориметрическое определение хинолонов на целлюлозной бумаге и тонком слое силикагеля в лекарственных препаратах с использованием смартфона // Журн. аналит. химии. 2021. Т. 76. №7. С. 593.
  112. Амелин В.Г., Шаока З.А.Ч., Большаков Д.С. Использование смартфона в твердофазно-флуориметрическом определении некоторых нестероидных противовоспалительных средств в лекарственных препаратах // Хим.-фарм. журн. 2021. Т. 55. № 9. С. 54.
  113. Амелин В.Г., Шаока З.А.Ч., Большаков Д.С., Третьяков А.В. Цифровая цветометрия индикаторных тест-систем с использованием смартфона и хемометрического анализа при определении хинолонов в лекарственных препаратах // Журн. прикл. спектроск. 2022. Т. 89. № 1. С. 84.
  114. Амелин В.Г., Шаока З.А.Ч., Большаков Д.С. Микроэкстракционно-цветометрическое определение и идентификация антибиотиков пенициллинового ряда в лекарственных средствах с использованием смартфона и хемометрического анализа // Вестн. Моск. ун-та. Серия 2. Химия. 2022. Т. 63. № 3. С. 222.
  115. Амелин В.Г., Шаока З.А.Ч., Большаков Д.С., Третьяков А.В. Цифровая цветометрия индикаторных тест-систем с использованием смартфона и хемометрического анализа при определении тетрациклинов в лекарственных препаратах // Изв. вузов. Химия и хим. технология. 2022. Т. 65. Вып. 7. С. 17.
  116. Амелин В.Г., Майя M., Большаков Д.С. Микроэкстракционно-цветометрическое определение четвертичных аммониевых соединений в лекарственных и дезинфицирующих средствах // Вестн. Моск. ун-та. Серия 2. Химия. 2021. Т. 62. № 2. С. 121.
  117. Амелин В.Г., Шаока З.А.Ч. Использование смартфона при идентификации и классификации природных минеральных вод по цветометрии индикаторных бумаг // Журн. аналит. химии. 2022. Т. 77. № 7. С. 638.
  118. Шаока З.А.Ч., Амелин В.Г., Репкин Р.В. Идентификация природных минеральных вод Владимирской области по цветометрии индикаторных бумаг с использованием смартфона // Вестн. Моск. ун-та. Серия 2. Химия. 2022. Т. 63. № 3. С. 233.
  119. Silva Neto G.F., Braga A.F.J.W.B. Classification of mineral waters based on digital images acquired by smartphones // Quim. Nova. 2016. V. 39. № 7. P. 876.
  120. Zaragoza P., Fuentes A., Ruiz-Rico M., Vivancos J., Fernandez-Segovia I., Ros-Lis J.V., Barat J.M., Martinez-Manez R. Development of a colorimetric sensor array for squid spoilage assessment // Food Chem. 2015. V. 175. P. 315.
  121. Huang X., Xin J., Zhao J. A novel technique for rapid evaluation of fish freshness using colorimetric sensor array // J. Food Eng. 2011. V. 105. P. 632.
  122. Bueno L., Paixao T.R.L.C. A copper interdigitated electrode and chemometrical tools used for the discrimination of the adulteration of ethanol fuel with water // Talanta. 2011. V. 87. P. 210.
  123. Nguyen T.T., Huy B.T., Lee Y. Disposable colorimetric paper-based probe for the detection of amine-containing gases in aquatic sediments // ACS Omega. 2019. V. 4. P. 12665.
  124. Zhang C., Bailey D.P., Suslick K.S. Colorimetric sensor arrays for the analysis of beers: A feasibility study // J. Agric. Food Chem. 2006. V. 54. P. 4925.
  125. Zhang C., Suslick K.S. Colorimetric sensor array for soft drink analysis // J. Agric. Food Chem. 2007. V. 55. P. 237.
  126. Suslick B.A., Feng L., Suslick K.S. Discrimination of complex mixtures by a colorimetric sensor array: coffee aromas // Anal. Chem. 2010. V. 82. P. 2067.
  127. Feng L., Musto C.J., Kemling J.W., Lim S.H., Zhong W., Suslick K.S. Colorimetric sensor array for determination and identification of toxic industrial chemicals // Anal. Chem. 2010. V. 82. № 22. P. 9433.

Copyright (c) 2023 З.А.Ч. Шаока, Д.С. Большаков, В.Г. Амелин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies